Абсолютная температура как мера средней кинетической энергии теплового движения частиц вещества. Температура как мера средней кинетической энергии молекул

До сих пор мы не имели дела с температурой; мы сознательно избегали разговоров на эту тему. Мы знаем, что если сжимать газ, энергия молекул возрастает, и мы обычно говорим, что газ при этом нагревается. Теперь надо понять, какое это имеет отношение к температуре. Нам известно, что такое адиабатическое сжатие, а как поставить опыт, чтобы можно было сказать, что он был проведен при постоянной температуре? Если взять два одинаковых ящика с газом, приставить их один к другому и подержать так довольно долго, то даже если вначале эти ящики обладали тем, что мы назвали различной температурой, то в конце концов температуры их станут одинаковыми. Что это означает? Только то, что ящики достигли того состояния, которого они в конце концов достигли бы, если бы их надолго предоставили самим себе! Состояние, в котором температуры двух тел равны - это как раз то окончательное состояние, которого достигают после длительного соприкосновения друг с другом.

Давайте посмотрим, что случится, если ящик разделен на две части движущимся поршнем и каждое отделение заполнено разным газом, как это показано на фиг. 39.2 (для простоты предположим, что имеются два одноатомных газа, скажем, гелий и неон). В отделении 1 атомы массы движутся со скоростью , а в единице объема их насчитывается штук, в отделении 2 эти числа соответственно равны , и . При каких же условиях достигается равновесие?

Фиг. 39.2. Атомы двух разных одноатомных газов, разделенных подвижным поршнем.

Разумеется, бомбардировка слева заставляет поршень двигаться вправо и сжимает газ во втором отделении, затем то же самое происходит справа и поршень ходит так взад и вперед, пока давление с обеих сторон не сравняется, и тогда поршень остановится. Мы можем устроить так, чтобы давление с обеих сторон было одинаковым, для этого нужно, чтобы внутренние энергии, приходящиеся на единичный объем, были одинаковыми или чтобы произведения числа частиц в единице объема на среднюю кинетическую энергию было одинаковым в обоих отделениях. Сейчас мы попытаемся доказать, что при равновесии должны быть одинаковы и отдельные сомножители. Пока мы знаем только, что равны между собой произведения чисел частиц в единичных объемах на средние кинетические энергии

;

это следует из условия равенства давлений и из (39.8). Нам предстоит установить, что по мере постепенного приближения к равновесию, когда температуры газов сравниваются, выполняется не только это условие, а происходит и еще кое-что.

Чтобы было яснее, предположим, что нужное давление слева в ящике достигается за счет очень большой плотности, но малых скоростей. При больших и малых можно получить то же самое давление, что и при малых и больших . Атомы, если они плотно упакованы, могут двигаться медленно, или атомов может быть совсем немного, но ударяют они о поршень с большей силой. Установится ли равновесие навсегда? Сначала кажется, что поршень никуда не сдвинется и так будет всегда, но если продумать все еще раз, то станет ясно, что мы упустили одну очень важную вещь. Дело в том, что давление на поршень вовсе не равномерное, поршень-то раскачивается точно также, как барабанная перепонка, о которой мы говорили в начале главы, ведь каждый новый удар не похож на предыдущий. Получается не постоянное равномерное давление, а скорее нечто вроде барабанной дроби - давление непрерывно меняется, и наш поршень как бы постоянно дрожит. Предположим, что атомы правого отделения ударяют о поршень более или менее равномерно, а слева атомов меньше, и удары их редки, но очень энергичны. Тогда поршень то и дело будет получать очень сильный импульс слева и отходить вправо, в сторону более медленных атомов, причем скорость этих атомов будет возрастать. (При столкновении с поршнем каждый атом приобретает или теряет энергию в зависимости от того, в какую сторону движется поршень в момент столкновения.) После нескольких столкновений поршень качнется, потом еще, еще и еще..., газ в правом отделении будет время от времени встряхиваться, а это приведет к увеличению энергии его атомов, и движение их ускорится. Так будет продолжаться до тех пор, пока не уравновесятся качания поршня. А равновесие установится тогда, когда скорость поршня станет такой, что он будет отбирать у атомов энергию так же быстро, как и отдавать. Итак, поршень движется с какой-то средней скоростью, и нам предстоит найти ее. Если нам это удастся, мы подойдем к решению задачи поближе, потому что атомы должны подогнать свои скорости так, чтобы каждый газ получал через поршень ровно столько энергии, сколько теряет.

Очень трудно рассчитать движение поршня во всех деталях; хотя все это очень легко понять, оказывается, что проанализировать это несколько труднее. Прежде чем приступить к такому анализу, решим другую задачу: пусть ящик заполнен молекулами двух сортов с массами и , скоростями и и т. д.; теперь молекулы смогут познакомиться поближе. Если сначала все молекулы №2 покоятся, то долго это продолжаться не может, потому что о них будут ударять молекулы №1 и сообщать им какую-то скорость. Если молекулы №2 могут двигаться значительно быстрее, чем молекулы №1, то все равно рано или поздно им придется отдать часть своей энергии более медленным молекулам. Таким образом, если ящик заполнен смесью двух газов, то проблема состоит в определении относительной скорости молекул обоих сортов.

Это тоже очень трудная задача, но мы все-таки решим ее. Сначала нам придется решить «подзадачу» (опять это один из тех случаев, когда, независимо от того как решается задача, окончательный результат запоминается легко, а вывод требует большого искусства). Предположим, что перед нами две сталкивающиеся молекулы, обладающие разными массами; во избежание осложнений мы наблюдаем за столкновением из системы их центра масс (ц. м.), откуда легче уследить за ударом молекул. По законам столкновений, выведенным из законов сохранения импульса и энергии, после столкновения молекулы могут двигаться только так, что каждая сохраняет величину своей первоначальной скорости, и изменить они могут только направление движения. Типичное столкновение выглядит так, как его изобразили на фиг. 39.3. Предположим на минутку, что мы наблюдаем столкновения, системы центра масс которых покоятся. Кроме того, надо предположить, что все молекулы движутся горизонтально. Конечно, после первого же столкновения часть молекул будет двигаться уже под каким-то углом к исходному направлению. Иначе говоря, если вначале все молекулы двигались горизонтально, то спустя некоторое время мы обнаружим уже вертикально движущиеся молекулы. После ряда других столкновений они снова изменят направление и повернутся еще на какой-то угол. Таким образом, если кому-нибудь и удастся сначала навести порядок среди молекул, то все равно они очень скоро разбредутся по разным направлениям и с каждым разом будут все больше и больше распыляться. К чему же это в конце концов приведет? Ответ: Любая пара молекул будет двигаться в произвольно выбранном направлении столь же охотно, как и в любом другом. После этого дальнейшие столкновения уже не смогут изменить распределения молекул.

Фиг. 39. 3. Столкновение двух неодинаковых молекул, если смотреть из системы центра масс.

Что имеется в виду, когда говорят о равновероятном движении в любом направлении? Конечно, нельзя говорить о вероятности движения вдоль заданной прямой – прямая слишком тонка, чтобы к ней можно было относить вероятность, а следует взять единицу «чего-нибудь». Идея заключается в том, что через заданный участок сферы с центром в точке столкновения проходит столько же молекул, сколько через любой другой участок сферы. В результате столкновений молекулы распределяются по направлениям так, что любым двум равным по площади участкам сферы будут соответствовать равные вероятности (т. е. одинаковое число прошедших через эти участки молекул).

Между прочим, если мы будем сравнивать первоначальное направление и направление, образующее с ним какой-то угол , то интересно, что элементарная площадь на сфере единичного радиуса равна произведению на , или, что то же самое, на дифференциал . Это означает, что косинус угла между двумя направлениями с равной вероятностью принимает любое значение между и .

Теперь нам надо вспомнить о том, что имеется на самом деле; ведь у нас нет столкновений в системе центра масс, а сталкиваются два атома с произвольными векторными скоростями и . Что происходит с ними? Мы поступим так: снова перейдем к системе центра масс, только теперь она движется с «усредненной по массам» скоростью . Если следить за столкновением из системы центра масс, то оно будет выглядеть так, как это изображено на фиг. 39.3, только надо подумать об относительной скорости столкновения . Относительная скорость равна . Дело, следовательно, обстоит так: движется система центра масс, а в системе центра масс молекулы сближаются с относительной скоростью ; столкнувшись, они движутся по новым направлениям. Пока все это происходит, центр масс все время движется с одной и той же скоростью без изменений.

Ну и что же получится в конце концов? Из предыдущих рассуждений делаем следующий вывод: при равновесии все направления равновероятны относительно направления движения центра масс. Это означает, что в конце концов не будет никакой корреляции между направлением относительной скорости и движением центра масс. Если бы даже такая корреляция существовала вначале, то столкновения ее бы разрушили и она в конце концов исчезла бы полностью. Поэтому среднее значение косинуса угла между и равно нулю. Это значит, что

Скалярное произведение легко выразить через и :

Займемся сначала ; чему равно среднее ? Иначе говоря, чему равно среднее проекции скорости одной молекулы на направление скорости другой молекулы? Ясно, что вероятности движения молекулы как в одну сторону, так и в противоположную одинаковы. Среднее значение скорости в любом направлении равно нулю. Поэтому и в направлении среднее значение тоже равно нулю. Итак, среднее значение равно нулю! Следовательно, мы пришли к выводу, что среднее должно быть равно . Это значит, что средние кинетические энергии обеих молекул должны быть равны:

. (39.21)

Если газ состоит из атомов двух сортов, то можно показать (и мы даже считаем, что нам удалось это сделать), что средние кинетические энергии атомов каждого сорта равны, когда газ находится в состоянии равновесия. Это означает, что тяжелые атомы движутся медленнее, чем легкие; это легко проверить, поставив эксперимент с «атомами» различных масс в воздушном желобе.

Теперь сделаем следующий шаг и покажем, что если в ящике имеются два газа, разделенные перегородкой, то по мере достижения равновесия средние кинетические энергии атомов разных газов будут одинаковы, хотя атомы и заключены в разные ящики. Рассуждение можно построить по-разному. Например, можно представить, что в перегородке проделана маленькая дырочка (фиг. 39.4), так что молекулы одного газа проходят сквозь нее, а молекулы второго слишком велики и не пролезают. Когда установится равновесие, то в том отделении, где находится смесь газов, средние кинетические энергии молекул каждого сорта сравняются. Но ведь в числе проникших сквозь дырочку молекул есть и такие, которые не потеряли при этом энергии, поэтому средняя кинетическая энергия молекул чистого газа должна быть равна средней кинетической энергии молекул смеси. Это не очень удовлетворительное доказательство, потому что ведь могло и не быть такой дырочки, сквозь которую пройдут молекулы одного газа и не смогут пройти молекулы другого.

Фиг. 39.4. Два газа в ящике, разделенном полупроницаемой перегородкой.

Давайте вернемся к задаче о поршне. Можно показать, что кинетическая энергия поршня тоже должна быть равна . Фактически кинетическая энергия поршня связана только с его горизонтальным движением. Пренебрегая возможным движением поршня вверх и вниз, мы найдем, что горизонтальному движению соответствует кинетическая энергия . Но точно так же, исходя из равновесия на другой стороне, можно показать, что кинетическая энергия поршня должна быть равна . Хотя мы повторяем предыдущее рассуждение, возникают некоторые дополнительные трудности в связи с тем, что в результате столкновений средние кинетические энергии поршня и молекулы газа сравниваются, потому что поршень находится не внутри газа, а смещен в одну сторону.

Если вас не удовлетворит и это доказательство, то можно придумать искусственный пример, когда равновесие обеспечивается устройством, по которому молекулы каждого газа бьют с обеих сторон. Предположим, что сквозь поршень проходит короткий стержень, на концах которого насажено по шару. Стержень может двигаться сквозь поршень без трения. По каждому из шаров со всех сторон бьют молекулы одного сорта. Пусть масса нашего устройства равна , а массы молекул газа, как и раньше, равны и . В результате столкновений с молекулами первого сорта кинетическая энергия тела массы равна среднему значению (мы уже доказали это). Точно так же, столкновения с молекулами второго сорта заставляют тело иметь кинетическую энергию, равную среднему значению . Если газы находятся в тепловом равновесии, то кинетические энергии обоих шаров должны быть равны. Таким образом, результат, доказанный для случая смеси газов, можно немедленно обобщить на случай двух разных газов при одинаковой температуре.

Итак, если два газа имеют одинаковую температуру, то средние кинетические энергии молекул этих газов в системе центра масс равны.

Средняя кинетическая энергия молекул - это свойство только «температуры». А будучи свойством «температуры», а не газа, она может служить определением температуры. Средняя кинетическая энергия молекулы, таким образом, есть некоторая функция температуры. Но кто нам подскажет, по какой шкале отсчитывать температуру? Мы можем сами определить шкалу температуры так, что средняя энергия будет пропорциональна температуре. Лучше всего для этого назвать «температурой» саму среднюю энергию. Это была бы самая простая функция, но, к несчастью, эту шкалу уже выбрали иначе и вместо того, чтобы назвать энергию молекулы просто «температурой», используют постоянный множитель, связывающий среднюю энергию молекулы и градус абсолютной температуры, или градус Кельвина. Этот множитель: дж на каждый градус Кельвина. Таким образом, если абсолютная температура газа равна , то средняя кинетическая энергия молекулы равна (множитель введен только для удобства, благодаря чему исчезнут множители в других формулах).

Заметим, что кинетическая энергия, связанная с составляющей движения в любом направлении, равна только . Три независимых направления движения доводят ее до .

На этом уроке мы будем разбирать физическую величину, уже знакомую нам из курса восьмого класса - температуру. Мы дополним её определение как меру теплового равновесия и меру средней кинетической энергии. Опишем недостатки одних и преимущества других методов измерения температур, введём понятие шкалы абсолютных температур и, наконец, выведем зависимость кинетической энергии молекул газа и давления газа от температуры.

Причины этому две:

  1. Различные термометры используют различные вещества в качестве индикатора, поэтому на одно и то же изменение температуры в зависимости от свойств конкретного вещества термометры реагируют по-разному;
  2. Произвольность выбора начала отсчёта шкалы температур.

Поэтому для любых точных замеров температур такие термометры не годятся. И начиная с восемнадцатого века, используются более точные термометры, коими является газовые термометры (см. рис. 2)

Рис. 2. Газовый термометр ()

Причиной этого является тот факт, что газы расширяются одинаково при изменении температуры на одинаковые значения. Для газовых термометров справедливо следующее:

То есть для измерения температуры либо фиксируется изменение давления при постоянном объёме, либо объём при постоянном давлении.

В газовых термометрах часто используют разреженный водород, который, как мы помним, очень хорошо подходит под модель идеального газа.

Кроме неидеальности бытовых термометров имеет место быть неидеальность многих шкал, которые используются в быту. В частности, шкала Цельсия, как наиболее нам знакомая. Как и в случае с термометрами эти шкалы выбирают случайным образом начальный уровень (для шкалы Цельсия это температура плавления льда). Поэтому для работы с физическими величинами необходима другая, абсолютная шкала.

Эту шкалу ввёл в 1848 г английский физик Уильям Томпсон (лорд Кельвин) (рис. 3). Зная, что при росте температур тепловая скорость движения молекул и атомов тоже растёт, нетрудно установить, что при уменьшении температур скорость будет падать и при определённой температуре рано или поздно станет нулём, как и давление (исходя и основного уравнения МКТ). Эту температуру и выбрали за начало отсчёта. Совершенно очевидно, что температура не может достигнуть значения меньше этого значения, поэтому оно получило название «абсолютный ноль температур». Для удобства же 1 градус по шкале Кельвина был приведён в соответствии с 1 градусом по шкале Цельсия.

Итак, получаем следующее:

Обозначение температуры - ;

Единица измерения - К, «кельвин»

Перевод к шкале Кельвина:

Следовательно, абсолютный ноль температур - это температура

Рис. 3. Уильям Томпсон ()

Теперь для определения температуры как меры средней кинетической энергии молекул имеет смысл обобщить те рассуждения, которые мы приводили в определении абсолютной шкалы температур:

Итак, как видим, температура и правда является мерой средней кинетической энергией поступательного движения. Конкретное же формульное соотношение вывел австрийский физик Людвиг Больцман (рис. 4):

Здесь - так называемый коэффициент Больцмана. Это константа, численно равная:

Как мы видим, размерность этого коэффициента - , то есть это своего рода коэффициент пересчёта из шкалы температур в шкалу энергий, ведь мы понимаем теперь, что, по сути, должны были измерять температуру в единицах энергии.

Теперь рассмотрим, как будет зависеть давление идеального газа от температуры. Для этого запишем основное уравнение МКТ в следующем виде:

и подставим в эту формулу выражение для связи средней кинетической энергии с температурой. Получим:

Рис. 4. Людвиг Больцман ()

На следующем занятии мы сформулируем уравнение состояния идеального газа.

Список литературы

  1. Мякишев Г.Я., Синяков А.З. Молекулярная физика. Термодинамика. - М.: Дрофа, 2010.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Илекса, 2005.
  3. Касьянов В.А. Физика 10 класс. - М.: Дрофа, 2010.
  1. Большая Энциклопедия Нефти Газа ().
  2. youtube.com ().
  3. E-science.ru ().

Домашнее задание

  1. Стр. 66: № 478-481. Физика. Задачник. 10-11 классы. Рымкевич А.П. - М.: Дрофа, 2013. ()
  2. Как определяют шкалу температур по Цельсию?
  3. Укажите температурный диапазон по шкале Кельвина для вашего города летом и зимой.
  4. Воздух состоит в основном из азота и кислорода. Кинетическая энергия молекул какого газа больше?
  5. *Чем отличается расширение газов от расширения жидкостей и твёрдых тел?

«Физика - 10 класс»

Какие макропараметры используют для описания состояния газа?
Справедливо ли утверждение: «Чем быстрее движутся молекулы газа, тем выше его температура»?


Средняя кинетическая энергия молекул газа при тепловом равновесии.


Возьмём сосуд, разделённый пополам перегородкой, проводящей тепло. В одну половину сосуда поместим кислород, а в другую - водород, имеющие разную температуру. Спустя некоторое время газы будут иметь одинаковую температуру, не зависящую от рода газа, т. е. будут находиться в состоянии теплового равновесия. Для определения температуры выясним, какая физическая величина в молекулярно-кинетической теории обладает таким же свойством.

Из курса физики основной школы известно, что, чем быстрее движутся молекулы, тем выше температура тела. При нагревании газа в замкнутом сосуде давление газа возрастает. Согласно же основному уравнению молекулярно-кинетической теории (9.7) давление газа р прямо пропорционально средней кинетической энергии поступательного движения молекул:

Так как концентрация молекул газа то из уравнения (9.7) получаем или или, согласно формуле (8.8),

При тепловом равновесии, если давление и объём газа массой m постоянны и известны, то средняя кинетическая энергия молекул газа должна иметь строго определённое значение, как и температура.

Можно предположить, что при тепловом равновесии именно средние кинетические энергии молекул всех газов одинаковы .

Конечно, это пока только предположение. Его нужно экспериментально проверить. Практически такую проверку произвести непосредственно невозможно, так как измерить среднюю кинетическую энергию молекул очень трудно. Но с помощью основного уравнения молекулярно-кинетической теории её можно выразить через макроскопические параметры:

Если кинетическая энергия действительно одинакова для всех газов в состоянии теплового равновесия, то и значение давления р должно быть тоже одинаково для всех газов при

Газы в состоянии теплового равновесия.


Рассмотрим следующий опыт. Возьмём несколько сосудов, заполненных различными газами, например водородом, гелием и кислородом. Сосуды имеют определённые объёмы и снабжены манометрами. Это позволяет измерить давление в каждом сосуде. Массы газов известны, тем самым известно число молекул в каждом сосуде.


Приведём газы в состояние теплового равновесия. Для этого поместим их в тающий лёд и подождём, пока не установится тепловое равновесие и давление газов перестанет меняться (рис. 9.4). После этого можно утверждать, что все газы имеют одинаковую температуру 0 °С. Давления газов р, их объёмы V и число молекул N различны. Найдём отношение для водорода. Если, к примеру, водород, количество вещества которого равно 1 моль, занимает объём V H 2 = 0,1 м 3 , то при температуре 0 °С давление оказывается равным р Н 2 = 2,265 10 4 Па. Отсюда

Если взять водород в объёме, равном kV H 2 , то и число молекул будет равно kN A и отношение останется равным 3,76 10 -21 Дж.

Такое же значение отношения произведения давления газа на его объём к числу молекул получается и для всех других газов при температуре тающего льда. Обозначим это отношение через Θ 0 . Тогда

Таким образом, наше предположение оказалось верным.

Средняя кинетическая энергия , а также давление р в состоянии теплового равновесия одинаковы для всех газов, если их объёмы и количества вещества одинаковы или если отношение

Соотношение (9.10) не является абсолютно точным. При давлениях в сотни атмосфер, когда газы становятся весьма плотными, отношение перестаёт быть строго определённым, не зависящим от занимаемых газами объёмов. Оно выполняется для газов, когда их можно считать идеальными.

Если же сосуды с газами поместить в кипящую воду при нормальном атмосферном давлении, то согласно эксперименту отношение по-прежнему будет одним и тем же для всех газов, но больше, чем предыдущее:


Определение температуры.


Можно следовательно, утверждать, что величина Θ растёт с повышением температуры. Более того, Θ ни от чего, кроме температуры, не зависит. Ведь для идеальных газов Θ не зависит ни от рода газа, ни от его объёма или давления, а также от числа частиц в сосуде.

Этот опытный факт позволяет рассматривать величину Θ как естественную меру температуры, как параметр газа, определяемый через другие макроскопические параметры газа.
В принципе можно было бы считать температурой и саму величину Θ и измерять температуру в энергетических единицах - джоулях.
Однако, во-первых, это неудобно для практического использования (температуре 100 °С соответствовало бы очень малое значение - порядка 10 -21 Дж), а во-вторых, и это главное, уже давно температуру принято выражать в градусах.

На практике для описания процессов, происходящих в газах, используют макроскопические параметры - давление р , объем V итемпературу Т . Эти величины характеризуют состояние газа и легко измеряются различными приборами. Между ними устанавливаются соотношения в виде газовых законов, которые мы рассмотрим позже.

Понятие температуры тесно связано с понятием теплового равновесия. Тепловое равновесие - это такое состояние системы тел, находящихся в тепловом контакте, при котором не происходит теплопередачи от одного тела к другому, и все макроскопические параметры тел остаются неизменными. Температура - это физический параметр, одинаковый для всех тел, находящихся в тепловом равновесии.

Для измерения температуры используются физические приборы - термометры, в которых о величине температуры судят по изменению какого-либо физического параметра. В различных конструкциях термометров используются разнообразные физические свойства вещества (например, изменение линейных размеров твердых тел или изменение электрического сопротивления проводников при нагревании). Термометры должны быть откалиброваны. Для этого их приводят в тепловой контакт с телами, температуры которых считаются известными. По температурной шкале Цельсия точке плавления льда приписывается температура 0 °С, а точке кипения воды - 100 °С.

Английский физик У. Кельвин в 1848 г. предложил использовать точку нулевого давления газа для построения новой температурной шкалы - шкалы Кельвина . В этой шкале единица измерения температуры такая же, как и в шкале Цельсия, но нулевая точка сдвинута:

T = t + 273,15. (7.10)

В системе СИ принято единицу измерения температуры по шкале Кельвина называть кельвином и обозначать буквой K.

Температурная шкала Кельвина называется абсолютной шкалой температур. Она оказывается наиболее удобной при построении физических теорий.

Экспериментально доказано, что давление разреженного газа в сосуде постоянного объема V изменяется прямо пропорционально его абсолютной температуре: p ~ T. С другой стороны, опыт показывает, что при неизменных объеме V и температуре T давление газа изменяется прямо пропорционально концентрации n молекул газа, т.е. числу молекул газа в единице объема. Для любого разреженного газа справедливо соотношение:

где k - некоторая универсальная для всех газов постоянная величина. Ее называют постоянной Больцмана, в честь австрийского физика Л. Больцмана, одного из создателей молекулярно-кинетической теории. Постоянная Больцмана - одна из фундаментальных физических констант. Ее численное значение в СИ равно:


k = 1,38·10 -23 Дж/К. (7.12)

Сравнивая соотношения (7.11) и (7.9), можно получить:

Средняя кинетическая энергия хаотического движения молекул газа прямо пропорциональна абсолютной температуре. Таким образом, температура есть мера средней кинетической энергии поступательного движения молекул .

Следует обратить внимание на то, что средняя кинетическая энергия поступательного движения молекулы не зависит от ее массы. Броуновская частица, взвешенная в жидкости или газе, обладает такой же средней кинетической энергией, как и отдельная молекула, масса которой на много порядков меньше массы броуновской частицы. Этот вывод распространяется и на случай, когда в сосуде находится смесь химически невзаимодействующих газов, молекулы которых имеют разные массы. В состоянии равновесия молекулы разных газов будут иметь одинаковые средние кинетические энергии теплового движения, определяемые только температурой смеси. Давление смеси газов на стенки сосуда будет складываться из парциальных давлений каждого газа:

В этом соотношении n 1 , n 2 , n 3 , … - концентрации молекул различных газов в смеси. Это соотношение выражает на языке молекулярно-кинетической теории экспериментально установленный в начале XIX столетия закон Дальтона : давление в смеси химически невзаимодействующих газов равно сумме их парциальных давлений.

МКТ поведение молекул в телах можно охарактеризовать средними значениями тех или иных величин, которые относятся не к отдельным молекулам, а ко всем молекулам в целом. T, V, P

МКТ МЕХАНИЧЕСКИЕ ВЕЛИЧИНЫ V T P величина, характеризующая внутреннее состояние тела (в механике ее нет)

МКТ МАКРОСКОПИЧЕСКИЕ ПАРАМЕТРЫ Величины, характеризующие состояние макроскопических тел без учета молекулярного строения тел (V, P, T) называют макроскопическими параметрами.

Температура Степень нагретости тел. холодное Т 1 теплое

Температура Почему термометр не показывает температуру тела сразу после того как он соприкоснулся с ним?

Тепловое равновесие - это такое состояние, при котором все макроскопические параметры сколь угодно долго остаются неизменными Устанавливается с течением времени между телами, имеющими различную температуру.

Температура Важное свойство тепловых явлений Любое макроскопическое тело (или группа макроскопических тел) при неизменных внешних условиях самопроизвольно переходит в состояние теплового равновесия.

Температура Неизменные условия значит, что в системе 1 Не изменяются объем и давление 2 Отсутствует теплообмен 3 Температура системы остается постоянной

Температура Микроскопические процессы внутри тела не прекращаются и при тепловом равновесии 1 Меняются скорости молекул при столкновениях 2 Изменяется положение молекул

Температура Система может находиться в различных состояниях. В любом состоянии температура имеет свое строго определенное значение. Другие физические величины могут иметь разные значения, которые не изменяются со временем.

Измерение температуры Можно использовать любую физическую величину, которая зависит от температуры. Чаще всего: V = V(T) Температурные шкалы Цельсия абсолютная (шкала Кельвина) Фаренгейта

Измерение температуры Температурные шкалы Шкала Цельсия = международная практическая шкала 0°С Температура таяния льда Реперные точки P 0 = 101325 Па 100°С Температура кипения воды Реперные точки – точки, на которых основывается измерительная шкала

Измерение температуры Температурные шкалы Абсолютная шкала (шкала Кельвина) Нулевая температура по шкале Кельвина соответствует абсолютному нулю, а каждая единица температуры по этой шкале равна градусу по шкале Цельсия. 1 К = 1 °С Уильям Томсон (лорд Кельвин) Единица температуры = 1 Кельвин = К

Измерение температуры Абсолютная температура = мера средней кинетической энергии движения молекул Θ = κT [Θ] = Дж [T] = К κ – постоянная Больцмана Устанавливает связь между температурой в энергетических единицах с температурой в кельвинах