Быстрый фактор роста сосудов. Использование фактора роста эндотелия сосудов. Другие диагностически значимые факторы роста

ЭНДОТЕЛИАЛЬНЫЙ ФАКТОР РОСТА СОСУДОВ (Vascular Endothelial Growth Factor, VEGF)

Семейство сходных по структуре и функциям ростовых факторов. VEGF-А, первый из идентифицированных представителей, фигурировал как “васкулотропин” (vasculotropin, VAS), или фактор сосудистой проницаемости (vascular permeability factor, VPF). Позднее были открыты VEGF-B, -C, -D и PIGF (Placenta growth factor).

VEGFs представляют собой эндотелий-специфические полипептиды, секретируемые митогены, которые ускоряют рост сосудов, их пролиферацию и проницаемость. Экспрессия VEGFs стимулируется рядом воздействий, в частности, высокими дозами глюкозы. VEGFs играют патогенетическую роль в микроциркуляторной дисфункции, обусловленной гипергликемией. Трансдукторный механизм пострецепторных реакций VEGFs включает активацию фосфолипазы С; однако возможны пути реализации эффекта через DAG, независимо от синтеза продуктов арахидоновой кислоты.

эндотелий полипептид сосуд рост

ЭНДОТЕЛИАЛЬНЫЕ ФАКТОРЫ РОСТА СОСУДОВ. Изоформы. (Vascular Endothelial Growth Factors, VEGF-A, -B, -C, -D)

Структура. Общая характеристика.

VEGF-А. Из общего гена образуются четыре изоформы, различающиеся количеством включенных аминокислотных остатков: VEGF, VEGF, VEGF, VEGF с МВ от 14 до 42 кДа.

Изоформы обладают сходной биологической активностью, но различаются по аффинности к гепарину. Реализуют свою активность при взаимодействии с рецепторами VEGFR-1, VEGF-2 (РИС.).

VEGF-А обладает активностью ростового фактора клеток сосудистого эндотелия с плеотропными функциями: усиление миграции, пролиферация, образование трубчатых структур клетки. Благодаря уникальным функциям VEGF-А реализует корреляцию процессов проницаемости, воспаления, ангиогенеза. Экспрессия мРНК VEGF-А отмечена в сосудистых регионах и в яичниках на всех стадиях эмбриогенеза, в первую очередь, в клетках, подверженных капилляризации. Очевидно, фактор не синтезируется непосредственно в эндотелии и его влияние носит паракринный характер. Экспрессия VEGF-А индуцируется в макрофагах, Т-клетках, астроцитах, гладкомышечных клетках, кардиомиоцитах, эндотелии, кератиноцитах. Фактор экспрессируется рядом опухолей. Гипоксия служит одной из основных причин активации VEGF-А.

VEGF-B. Экспрессируется преимущественно в мозге, скелетных мышцах, почках. При коэкспрессии с VEGF-А могут образовываться А/В-гетеродимеры. В противоположность первому, экспрессия VEGF-B не индуцируется гипоксией. Отмечено участие VEGF-B в васкуляризации коронарных сосудов взрослого организма. Регулирует активность плазминогена в эндотелиальных клетках. Анализ времени полужизни мРНК VEGF-B свидетельствует скорее о хроническом, нежели остром типе регуляции. VEGF-B связывается только с VEGFR-1 рецептором.

VEGF-С (или VEGF-Related Factor, VRF, или VEGF-2). Экспрессируется во взрослых клетках сердца, плаценты, легких, почек, тонкого кишечника и яичников. В период эмбрионального развития отмечено его присутствие в мезенхиме мозга; играет роль в развитии венозной и лимфатической сосудистых систем. Реализует активность через взаимодействие с VEGFR-2 и - VEGFR-3 рецепторами. Экспрессия VEGF-С и рецептора flt-4 имеют отношение к первичному раку желудка (Liu et al. 2004). Антитела к фактору могут быть использованы для ангиогенного тестирования противоопухолевой терапии in vivo (Ran et al. 2003).

VEGF-D (или c-fos-Induced Growth Factor, FIGF). Экспрессируется в легких, сердце, тонком кишечнике взрослого организма; обладает умеренно митогенной активностью в отношении эндотелиальных клеток. Однако в полной мере функции формы VEGF-D остаются неизвестными. Активность фактора реализуется преимущественно через взаимодействие с VEGFR-2 и - VEGFR-3 рецепторами.

Рецепторы VEGFs. Три рецептора опосредуют эффекты семейства VEGFs: VEGFR-1 (flt-1); VEGFR-2 (KDR/flk-1); VEGFR-3 (flt-4). Каждый относится к классу III рецепторных тирозинкиназ, содержащих в своей структуре lgG-подобные экстрацеллюлярные мотивы и интрацеллюлярный тирозинкиназный домен. VEGFR-1 и VEGFR-2 экспрессируются в эндотелиальных клетках, участвуя в реализации ангиогенеза. VEGFR-2 рассматривается как маркер клеток гематопоэза. VEGFR-3 - специфический маркер эмбриональных прелимфатических сосудов; идентифицирован в некоторых опухолях.

VEGFR-1 VEGFR-2 VEGFR-3

ФИЗИОЛОГИЧЕСКИЕ РЕАКЦИИ

  • · Индукция tPA uPA протеаз
  • · Морфогенез кровененосных сосудов
  • · Увеличение проницаемости сосудов
  • · Хемотаксис моноцитов и макрофагов
  • · Дифференцировка клеток сосудистого эндотелия
  • · Митогенез: образование микротрубочек
  • · Маркировка стволовых клеток гематопоэза
  • · Морфогенез лимфатических сосудов
  • · Дифференцировка клеток лимфатического эндотелия
  • · Хемотаксис эндотелиальных клеток

Новая информация о биологических и медицинских аспектах VEGFs.

  • · Ангиогенез и нейрогенез в развивающемся мозге регулируются при участии VEGFs и рецепторов, широко представленных в нейронах и сосудистом эндотелии (Emmanueli et al. 2003). Рецепторы типа flt-1 выявляются в гиппокампе, агранулярном кортексе и стриатуме; рецепторы типа flk-1 представлены повсеместно в неонатальных структурах головного мозга (Yang et al. 2003).
  • · При нокауте VEGF и flt-1 и flk-1 рецепторов обнаруживается высокая летальность животных в эмбриональный период; на основании этих данных постулируются нейропротективные функции VEGFs, независимые от сосудистого компонента, играющие роль регулятора нейрогенеза у взрослых особей (Rosenstein et al. 2003; Khaibullina et al. 2004). Нейрогенез клеток гиппокампа, стимулируемый физическими упражнениями у крыс, и мнестические функции находятся в непосредственной связи с экспрессией VEGF (Fabel et al. 2003).
  • · VEGF увеличивает ангиогенез в ишемизированных областях мозга и снижает неврологический дефицит; блокада VEGF специфическими антителами в острой фазе ишемического инсульта уменьшает проницаемость гематоэнцефалического барьера и увеличивает риск геморрагической трансформации (Zhang et al. 2000). Хроническая гипоперфузия тканей мозга крысы вызывает длительную экспрессию мРНК VEGF и самого пептида, которая коррелирует со стимулируемым ангиогенезом (Hai et al. 2003).
  • · Кратковременная глобальная ишемия мозга приводят к увеличению уровня мРНК VEGF и VEGF у взрослых крыс в течение первых суток. Аналогичным образом гипоксическая ишемия мозга 10-дневных крыс приводит к быстрому увеличению VEGF в нейронах. Экспрессия VEGFs в обоих случаях сопряжена с активацией фактора HIF-1alpha (Hypoxia-Inducible Factor-alpha) (Pichiule et al. 2003; Mu et al. 2003).
  • · VEGF стимулирует пролиферацию эндотелиальных клеток сосудов при механической травме спинного мозга; эти эффекты опосредованы экспрессией рецепторов Flk-1 и Ftl-1. Микроинъекции простагландина Е2?стимулируют активность VEGF (Skold et al. 2000). Астроцитоз, активируемый при повреждениях клеток мозга, и последующие репаративные процессы сопровождаются экспрессией Глиального фибриллярного кислого белка (GFAP); реактивный астроцитоз и стимулируемая экспрессия VEFG составляют последовательные этапы репаративного ангиогенеза (Salhina et al. 2000).
  • · VEGF оказывается одним из факторов изменения проницаемости гемато- энцефалического барьера и развития отека мозга после его травмы. Ранняя инвазия VEGF- секретирующих нейтрофилов в паренхиму поврежденной зоны коррелирует с фазным нарушением проницаемости гематоэнцефалического барьера, предшествующей развитию отека (Chodobski et al. 2003). В первые 3 часа после контузии отмечается экспрессия VEGF в части астроцитов и активация рецептора KDD/fik-1 в эндотелиальных сосудистых клетках в поврежденной ткани; эти процессы, связанные с увеличением капиллярной проницаемости, ведут к отеку (Suzuki et al. 2003). Средства, способные заблокировать активность VEGFs и их рецепторы, представляют интерес для терапии отеков мозга (см. обзор Josko & Knefel, 2003).
  • · Установлено, что VEGF синтезируется в допаминергических нейронах стриатума крысы. Однократная болюсная инъекция VEGF в стриатум взрослых крыс стимулировала развитие сосудов; трансплантация 14-дневных клеток вентрального мезэнцефалона в предобработанный VEGF участок стриатума приводила к гомогенному прорастанию малых кровеносных сосудов. Результаты, полученные на модели патологии Паркинсона, свидетельствуют о возможности использования VEGF-экспрессирующих трансплантантов для улучшения функции мозга (Pitzer et al. 2003).
  • · Способность VEGF влиять на ангиогенез объясняет его участие в развитии опухолей и метастазировании.

Наряду с другими нейротрофическими ростовыми факторами (TGF-alpha, basic FGF, PD-ECGF), VEGF связан с генезом некоторых видов карциномы (Hong et al. 2000) и опухолей простаты (Kollerman & Helpap, 2001). Увеличенный уровень VEGF в сыворотке крови может служить маркером опухолевого роста некоторых форм карциномы (Hayes et al. 2004). Молекулярный механизм функционирования VEGF связан со стимуляцией белка bcl-2 и торможением апоптического процесса в клетках аденокарциномы у мышей и человека (Pidgeon et al.2001).

ПЛАЦЕНТАРНЫЙ РОСТОВОЙ ФАКТОР (Рlacental Growth Factor, PIGF)

МВ 29 кДа. Впервые выделен из культуры глиомных клеток. Экспрессируется в плаценте, аутокринно влияя на трофобласты, и в меньшей степени в сердце, в легких, в щитовидной железе. Гипоксия не стимулирует образование PIGF, однако, при гипоксии могут коэкспрессироваться гетеродимеры PIGF/VEGF-А. Повышенный уровень PIGF и рецептора flt-1 служат предикторами преэклампсии у беременных женщин (Levine et al. 2004).Изоформа PIGF- 2 (МВ 38 кДа) служит лигандом для рецептора VEGFR-1; в отличие от PIGF-1 содержит гепарин- связывающий домен.

В течение 30 лет предполагалось, что ангиогенез - процесс образования новых кровеносных сосудов - может стать важной мишенью противоопухолевой терапии. И лишь недавно эта возможность была реализована. Клинические данные продемонстрировали, что гуманизированные моноклональные антитела - препарат бевацизумаб - прицельно действующие на важнейшую молекулу с проангиогенными свойствами, а именно - сосудистый эндотелиальный фактор роста (VEGF), могут увеличить продолжительность жизни больных метастатическим колоректальным раком при назначении в качестве терапии первой линии в комбинации с химиопрепаратами. Здесь мы обсудим функции и значение VECF, чтобы показать, что VEGF является обоснованной точкой приложения действия противоопухолевой терапии.

Что такое VEGF?

VEGF - один из членов семейства структурно близких между собой белков, которые являются лигандами для семейства рецепторов VEGF. VEGF влияет на развитие новых кровеносных сосудов (ангиогенез) и выживание незрелых кровеносных сосудов (сосудистая поддержка), связываясь с двумя близкими по строению мембранными тирозинкиназными рецепторами (рецептором-1 VEGF и рецептором-2 VEGF) и активируя их. Эти рецепторы экспрессируются клетками эндотелия стенки кровеносных сосудов (таблица 1). Связывание VEGF с этими рецепторами запускает сигнальный каскад, который в конечном итоге стимулирует рост эндотелиальных клеток сосуда, их выживание и пролиферацию. Эндотелиальные клетки участвуют в таких разнообразных процессах, как вазоконстрикция и вазодилатация, презентация антигенов, а также служат очень важными элементами всех кровеносных сосудов - как капилляров, так и вен или артерий. Таким образом, стимулируя эндотелиальные клетки, VEGF играет центральную роль в процессе ангиогенеза.

Почему важно делать Сосудисто-эндотелиального фактора роста (VEGF human)?

VEGF чрезвычайно важен для формирования адекватной функционирующей сосудистой системы в ходе эмбриогенеза и в раннем постнатальном периоде, однако у взрослых его физиологическая активность ограничена. Эксперименты на мышах показали следующее:

  • Целенаправленное повреждение одной или двух аллелей гена VEGF приводит к гибели эмбриона
  • Инактивация VEGF в период раннего постнатального развития также ведет к летальному исходу
  • Повреждение VEGF у взрослых мышей не сопровождается какими-либо явными аномалиями, поскольку его роль ограничена развитием фолликулов, заживлением ран и репродуктивном циклом у самок.

Ограниченное значение ангиогенеза у взрослых означает, что подавление активности VEGF представляет собой выполнимую терапевтическую задачу.

№ 5 - 2015 г. 14.00.00 Медицинские науки (14.01.00 Клиническая медицина)

УДК 611-018.74

ФАКТОР РОСТА ЭНДОТЕЛИЯ СОСУДОВ:

БИОЛОГИЧЕСКИЕ СВОЙСТВА И ПРАКТИЧЕСКОЕ ЗНАЧЕНИЕ (ОБЗОР

ЛИТЕРАТУРЫ)

Н. Л. Светозарский1, А. А. Артифексова2, С. Н. Светозарский3

1ГБУЗ «Нижегородская областная клиническая больница им. Н.А. Семашко» (г. Нижний

Новгород)

2ГБУЗ НО «Медицинский информационно-аналитический центр» (г. Нижний Новгород) 3ФБУЗ «Приволжский окружной медицинский центр» Федерального медико-биологического агентства (г. Нижний Новгород)

В обзоре литературы представлены основные сведения о факторе роста эндотелия сосудов (vascular endothelial growth factor, VEGF) и сферах его клинического применения. Рассмотрены физиологические и патологические пути образования сосудов и факторы регуляции ангиогенеза. Описаны основные свойства VEGF и его рецепторов, их роль в регуляции сосудистого роста в норме и при развитии злокачественных новообразований и заболеваний сетчатки. Обобщены сведения о препаратах, ингибирующих VEGF-опосредованный ангиогенез. Указано несколько направлений дальнейшего развития антиангиогенной терапии.

Ключевые слова: ангиогенез, фактор роста эндотелия сосудов, антиангиогенная терапия, лечение рака, возрастная макулярная дегенерация.

Светозарский Николай Львович - кандидат медицинских наук, врач-уролог ГБУЗ «Нижегородская областная клиническая больница им. Н.А. Семашко», e-mail: [email protected]

Артифексова Анна Алексеевна - доктор медицинских наук, профессор, врач-методист ГБУЗ НО «Медицинский информационно-аналитический центр», e-mail: [email protected]

Светозарский Сергей Николаевич - врач-офтальмолог офтальмологического отделения ФБУЗ «Приволжский окружной медицинский центр», e-mail: [email protected]

Введение. Рост новых кровеносных сосудов, обеспечивающих транспорт питательных веществ и кислорода, представляет собой основу многих физиологических

и патологических процессов. Активный рост сосудов сопровождает, с одной стороны, нормальный рост и развитие организма в пре- и постнатальном периоде, заживление ран, развитие плаценты и желтого тела, и, с другой стороны, развитие раковых опухолей, ревматоидный артрит, ожирение, псориаз, бронхиальную астму, возрастную макулярную дегенерацию сетчатки (ВМД). Пониженная активность ангиогенеза отмечается в старости и при таких заболеваниях, как болезнь Альцгеймера, инсульт, атеросклероз периферических сосудов и др. . Попытки фармакологически активировать рост сосудов пока не принесли успеха. В то же время изучение механизмов регуляции ангиогенеза позволило за последнее десятилетие создать целый ряд лекарств, направленно блокирующих рост новообразованных сосудов . Многие из них вошли в состав первой и второй линий лечения почечно-клеточного рака, рака молочной железы и других локализаций, а также возрастных и сосудистых поражений сетчатки.

Механизмы роста сосудов. Существует несколько путей образования сосудов :

Васкулогенез - рост сосудов у эмбриона с дифференцировкой ангиобластов в эндотелиоциты (после рождения также имеется небольшое количество циркулирующих прогениторных клеток);

Ангиогенез - прорастание новых сосудов из уже имеющейся сети сосудов;

Инвагинация с разделением сосудистой стенки и образованием дочерних сосудов;

Сосудистое кооптирование - присвоение опухолью имеющихся сосудов;

Сосудистая или «васкулогенная» мимикрия - выстилка просвета сосуда клетками опухоли;

Дифференцировка опухолевых клеток в эндотелиоциты.

Отметим, что физиологичными являются первые три пути, последние специфичны для канцерогенеза. Ангиогенез - основной путь роста сосудов у человека после рождения. Он проходит в несколько стадий: активация эндотелиоцитов, синтез протеаз и растворение базальной мембраны, миграция эндотелиальных клеток к ангиогенному стимулу, пролиферация эндотелиоцитов и образование первичной сосудистой стенки, ремоделирование сосуда, формирование полноценной структуры сосудистой стенки .

В регуляции ангиогенеза принимают участие как активирующие, так и ингибирующие ангиогенные факторы , некоторые из которых приведены в табл. 1.

Таблица 1

Активирующие и ингибирующие факторы ангиогенеза

Факторы активации ангиогенеза

Ингибиторы ангиогенеза

Факторы роста: фактор

роста эндотелия сосудов

(vascular endothelial

growth factor, VEGF),

эпидермальный фактор

роста (EGF),

трансформирующие

факторы роста (TGF-a,

-ß), фактор роста

фибробластов (FGF), Растворимые рецепторы VEGF (sVEGFR)

тромбоцитарный фактор Ангиопоэтин-2

роста (PDGF), Вазостатин

инсулиноподобный Ангиостатин (фрагмент плазминогена)

фактор роста-1 (IGF-1), Эндостатин

плацентарный фактор Интерферон-a, -ß, -у

роста PlGF Интерлейкин-4, -12, -18

Ангиогенин Индуцибельный протеин-10

Ангиопоэтин-1 Тромбоспондин

Гормоны (лептин, Тромбоцитарный фактор-4

эритропоэтин) Ретиноиды

Колониестимулирующие Ингибиторы матриксных

факторы (G-CSF, металлопротеаз (TIMP-1, -2)

GM-CSF) Гормоны (пролактин)

Активаторы

плазминогена

Интерлейкин-8

Белки базальной

мембраны (интегрины,

кадгерины и др.)

Матриксные

металлопротеиназы

Большое значение в регуляции ангиогенеза играет фактор роста эндотелия сосудов VEGF (Vascular endothelial growth factor) и его рецепторы. Семейство молекул VEGF включает несколько факторов: VEGF-A, -B, -C, -D, -E, обнаруженный у Орф-вируса, и плацентарный фактор роста PlGF . VEGF-A, -B и PlGF - основные регуляторы роста кровеносных сосудов, VEGF-C и -D необходимы для формирования лимфатических сосудов .

VEGF-A, также называемый VEGF, является одним из наиболее хорошо изученных факторов ангиогенеза, который рассматривается в качестве точки приложения ряда новых лекарственных средств для лечения рака и заболеваний сетчатки . В этой связи особый интерес для практического врача представляет знакомство с основными биологическими свойствами VEGF и их клиническим применением.

Биологические свойства VEGF-A. Впервые выделил и дал соответствующее название молекуле VEGF Наполеон Феррара в 1989 году VEGF-A - гликопротеид с молекулярной массой около 45 кД. Идентифицирован ряд изоформ VEGF-А, в частности VEGF-121, -145, -162, -165, -165b, -183, -189, -206. Кроме аминокислотного состава они отличаются по способности связывать гепарин и проникать через биологические мембраны .

VEGF стимулирует пролиферацию клеток эндотелия сосудов, изолированных из артерий, вен и лимфатических сосудов in vitro . На многих моделях показано активирующее действие VEGF на ангиогенез in vivo . VEGF-A жизненно необходим для развития организма в эмбриональном и раннем постнатальном периодах. Инактивация одного аллеля VEGF-A приводит к гибели эмбриона при сроке 11-12 дней . Введение мышам ингибиторов VEGF в возрасте от 1-го до 8-ми дней приводит к остановке роста и летальному исходу . VEGF-A важен для эндохондрального роста кости, его

ингибирование вызывает обратимую остановку роста костного скелета . VEGF-A участвует в регуляции ангиогенеза в ходе менструального цикла . VEGF-A способствует выживанию клеток эндотелия in vitro и in vivo. Известно, что VEGF-A индуцирует выработку белков-ингибиторов апоптоза Bcl-2, A1 и сурвивина клетками эндотелия. Ингибирование VEGF в неонатальном периоде у мышей приводит к апоптозу и регрессу васкуляризации, в то время как у взрослых особей такого эффекта не обнаружено, что указывает на изменение функции VEGF в ходе онтогенеза. Введение VEGF приводит к быстрому кратковременному повышению проницаемости сосудов. Основной точкой приложения VEGF являются клетки эндотелия, но митогенные и другие его эффекты были изучены и на других клетках, в том числе нейронах, VEGF вызывает хемотаксис моноцитов . VEGF активирует экспрессию оксида азота, простациклина и других цитокинов, способствующих вазодилатации.

Рецепторы VEGF-А. Изучено 2 вида тирозинкиназных рецепторов к VEGF-А - VEGFR-1 и -2. Функционирование и сигнальные пути VEGFR-1 неодинаковы у эндотелиальных и других видов клеток, изменяются они и в процессе онтогенеза. VEGFR-1 связывает молекулы VEGF-А, -B и PIGF. VEGFR-1 опосредует такие немитогенные функции в клетках эндотелия, как высвобождение факторов роста, активацию матриксных металлопротеиназ (MMP-9). Кроме того, он участвует в регуляции гемопоэза и хемотаксисе моноцитов .

VEGFR-2 связывает VEGF-А с высокой афинностью, имеет сродство к VEGF-C и -D. Этот рецептор опосредует основные свойства VEGF-А - активацию ангиогенеза и повышение проницаемости эндотелия. При связывании с лигандом происходит димеризация и фосфорилирование рецептора, что активирует сигнальный путь митоза, хемотаксиса и повышения выживаемости . Интересно, что эффект от активации мембранного рецептора отличен от активации внутриклеточного рецептора. Так, артериальный морфогенез индуцируется лишь по сигнальному пути внутриклеточного VEGFR-2 .

Значение VEGF-А для роста опухоли. В отличие от нормального сосудистого русла сосуды опухоли обычно представляют собой неупорядоченную сеть взаимосвязанных, извилистых трубчатых структур с высокой проницаемостью. В этой сети трудно выделить артериолы и венулы, в структуре стенки не всегда определяются перициты и гладкомышечные клетки . Быстрый рост опухолевой ткани определяет ряд факторов развития гипоксии: несоответствие роста клеток опухоли и эндотелия, неупорядоченная сеть сосудов с низкой скоростью кровотока, высокое давление тканевой жидкости . При гипоксии повышается уровень гипоксия-индуцибельного фактора-1-альфа (HIF-1a), который активирует экспрессию VEGF. VEGF повышает проницаемость сосудов, ведет к дезорганизации сосудистой стенки, что усугубляет гипоксию и способствует распространению клеток опухоли и росту метастазов. Клетки эндотелия в опухолевом окружении меняют свои свойства и нередко приобретают устойчивость к ингибиторам ангиогенеза . VEGF может стимулировать васкулогенез в опухоли путем привлечения из костного мозга гемопоэтических и эндотелиальных клеток-предшественников .

Клетки многих опухолей секретируют VEGF-А in vitro. Высокие уровни VEGF в сыворотке крови были выявлены при раке молочной железы, колоректальном, немелкоклеточном раке легкого, почечно-клеточном раке, глиобластоме и других злокачественных новообразованиях .

Выживаемость пациентов с высоким уровнем VEGF значительно ниже, чем у больных с низкой экспрессией VEGF. Прогностическая ценность уровня VEGF в отношении развития метастазов составила 73 % независимо от поражения лимфатических узлов . Ряд исследований указывают на возможность использования уровня VEGF в качестве

маркера прогноза при раке легкого и предстательной железы (РПЖ) . Необходимо также отметить, что в мета-анализе, включавшем 12 исследований, прогностическая роль VEGF-А при РПЖ не подтвердилась .

Значение VEGF в развитии неоваскуляризации сетчатки глаза. Рост сосудов в сетчатке осуществляется двумя путями: посредством васкулогенеза и ангиогенеза . Экспрессия VEGF в пренатальном и раннем неонатальном периодах во многом определяет активность этих процессов и, как результат, нормальную васкуляризацию сетчатки . Наибольшие уровни VEGF в ткани сетчатки определяются на 1-й неделе постнатального развития. В дальнейшем уровень VEGF плавно снижается и определяется в основном парциальным давлением кислорода в крови . Гипероксия подавляет выработку VEGF, что приводит к апоптозу клеток эндотелия и запустеванию сосудов. В клинической практике гипероксия развивается при кислородной терапии у недоношенных детей. Недостаток VEGF в этой ситуации способствует развитию первой стадии ретинопатии недоношенных . Экспрессия генов VEGF активируется в условиях гипоксии, что объясняет повышенный уровень VEGF-А в ткани сетчатки при моделировании ишемических поражений сетчатки, а также в водянистой влаге и стекловидном теле у пациентов с диабетической пролиферативной ретинопатией . Ряд работ показали ведущую роль VEGF как активатора ангиогенеза при ишемических поражениях сетчатки и возрастной макулярной дегенерации .

VEGF как мишень антиангиогенной терапии и возможные механизмы резистентности. Об антиангиогенной терапии как о стратегия борьбы с ростом опухоли впервые заговорил Фолькман в 1971 году . Изучение ключевого регулятора ангиогенеза - VEGF и его рецепторов позволило начать разработку таргетных препаратов, избирательно воздействующих на те или иные звенья сигнального пути фактора роста эндотелия сосудов.

При блокировании сигнального пути VEGF разворачиваются сразу несколько механизмов торможения ангиогенеза . Во-первых, приостанавливается рост новых сосудов, и частично запустевают имеющиеся. Во-вторых, недостаток VEGF как фактора, способствующего выживанию клеток эндотелия, ведет к апоптозу клеток эндотелия сосудов опухоли. Кроме того, в отсутствие VEGF не происходит хемотаксиса эндотелиальных клеток-предшественников, способствующих васкуляризации опухоли. Введение ингибиторов фактора роста опосредованно приводит к вазоконстрикции.

Разработаны и применяются препараты, ингибирующие VEGF-опосредованный ангиогенез. По механизму действия их можно разделить на 3 группы: взаимодействующие с молекулой VEGF, с рецепторами VEGF и направленные на внутриклеточные сигнальные пути рецепторов VEGF. В табл. 2 суммированы основные сведения о современных анти-VEGF препаратах, применяемых для лечения рака и поражений сетчатки .

Таблица 2

Лекарственные препараты, ингибирующие VEGF-опосредованный ангиогенез

Лекарство Тип действующего вещества Точка приложения Применение

Бевацизумаб (авастин) Моноклональные человеческие антитела VEGF-A Распространенный колоректальный рак, распространенный неплоскоклеточный немелкоклеточный рак легких, распространенный рак молочной железы, рецидивирующая глиобластома, распространенный почечно-клеточный рак

Рамуцирумаб (Cyramza / цирамза) Моноклональные человеческие антитела VEGF-связывающий домен рецептора VEGFR-2 Распространенный немелкоклеточный рак легких, колоректальный рак, рак желудка

Сорафениб (нексавар) Белок-ингибитор тирозинкиназ Сигнальный путь рецепторов VEGFR-2 и тромбоцитарного фактора роста Распространенный почечно-и печеночно-клеточный рак

Сунитиниб (сутент) Ингибитор тирозинкиназ Сигнальный путь рецепторов VEGFR и тромбоцитарного фактора роста Распространенный почечно-клеточный рак

Пазопаниб (вотриент) Ингибитор тирозинкиназ Сигнальный путь рецепторов VEGFR и тромбоцитарного фактора роста Распространенный почечно-клеточный рак, распространенная саркома мягких тканей (кроме гастроинтестинальных стромальных опухолей и липосаркомы) у пациентов, ранее получавших химиотерапию

Вандетаниб (зактима, капрелса) Ингибитор тирозинкиназ Сигнальный путь рецепторов VEGFR и тромбоцитарного фактора роста Нерезектабельный местнораспространенный или метастатический медуллярный рак щитовидной железы

Афлиберцепт (Айлия / Eylea - раствор для интравитреальных инъекций;Залтрап) Рекомбинантный белок, внеклеточные домены рецепторов VEGFR-1 и -2 VEGF-A, -B, PlGF-1, -2 Айлия / Еу1еа: неоваскулярная форма ВМД, диабетический макулярный отек, макулярный отек вследствие окклюзий вен сетчатки. Залтрап: колоректальный рак

Регорафениб (Stivarga) Ингибитор тирозинкиназ Сигнальный путь рецепторов VEGFR Колоректальный рак; гастроинтестинальные стромальные опухоли

Акситиниб (Inlyta) Ингибитор тирозинкиназ Сигнальный путь рецепторов VEGFR-2 Распространенный почечно-клеточный рак

Пегаптаниб (макуген - раствор для интравитреальных инъекций) Пегилированный аптамер (олигонуклеотид) VEGF-165 Неоваскулярная форма ВМД

Ранибизумаб (луцентис) Моноклональные антитела к VEGF-A VEGF Неоваскулярная форма ВМД, диабетический макулярный отек, макулярный отек вследствие окклюзий вен сетчатки, миопическая хориоидальная неоваскуляризация

Рекомбинантный

Конберцепт внеклеточные VEGF-A, -B, -C, PlGF Неоваскулярная форма ВМД

домены рецепторов

Необходимо отметить, что при системном применении для этой группы лекарств характерны малое терапевтическое окно и высокая частота побочных эффектов. К последним относят артериальную гипертензию, сердечную недостаточность, протеинурию вследствие поражения почек, угнетение костного мозга, сыпь и сенсорную невропатию .

В лечении поражений сетчатки ингибиторы ангиогенеза показали высокую эффективность, заключающуюся в регрессе новообразованных сосудов и повышении остроты зрения . Применение данной группы препаратов в лечении рака позволяет добиться снижения темпов прогрессирования болезни, но приводит к увеличению выживаемости больных . Отчасти это связано с развитием механизмов резистентности в ткани опухоли. К ним относят гиперэкспрессию других факторов активации ангиогенеза в условиях гипоксии, усугубляемой введением ингибиторов VEGF. Некоторые клетки опухоли приобретают мутации, обусловливающие толерантность к гипоксии. Активируются другие типы роста сосудов, менее чувствительные к действию ингибиторов VEGF, - васкулогенез (из циркулирующих прогениторных клеток), инвагинация, сосудистое кооптирование, «васкулогенная» мимикрия, дифференцировка опухолевых клеток в эндотелиоциты .

Заключение. Изучение механизмов сосудистого роста позволили установить целый ряд активирующих и ингибирующих цитокинов, среди которых ведущую роль играет фактор роста эндотелия сосудов. Знание структуры его изоформ, рецепторов и сигнальных путей определило точки приложения для новой группы таргетных лекарственных средств - блокаторов ангиогенеза. Эти препараты рекомендованы к применению в онкологии, но их эффективность не всегда превосходит эффективность традиционных схем полихимиотерапии. В лечении поражений сетчатки ингибиторы ангиогенеза показали более значительный эффект, заключающийся в регрессе новообразованных сосудов и повышении остроты зрения. Предполагают несколько направлений дальнейшего развития антиангиогенной терапии. В ближайшее время это - оптимизация схем лечения - доз и длительности приема препаратов, выявление различий в механизме действия и клиническом эффекте ингибиторов тирозинкиназ и анти-VEGF антител. В долгосрочной перспективе - создание препаратов, направленных сразу на несколько ключевых регуляторов ангиогенеза, поиск механизмов, ограничивающих специфичные для онкогенеза пути роста сосудов - сосудистое кооптирование, «васкулогенную» мимикрию и дифференцировку опухолевых клеток в эндотелиоциты .

Список литературы

4. Carmeliet P. Molecular mechanisms and clinical applications of angiogenesis / Р. Carmeliet, R. K. Jain // Nature. - 2011. - Vol. 473 (7347). - P. 298-307.

5. Folkman J. Angiogenesis: an organizing principle for drug discovery? / J. Folkman //

6. Ferrara N. Vascular endothelial growth factor: basic science and clinical progress / N. Ferrara // Endocr. Rev. - 2004. - Vol. 25. - P. 581-611.

7. Роль VEGF в развитии неопластического ангиогенеза / В. П. Чехонин [и др.] // Вестн. РАМН. - 2012. - № 2. - С. 23-34.

8. Герштейн Е. С. Современные представления о механизмах передачи сигналов факторов роста как основа эффективной молекулярно-направленной противоопухолевой терапии / Е. С. Герштейн, Н. Е. Кушлинский // Вопросы биологической, медицинской и фармацевтической химии. - 2007. - Т. 5, № 1. - С. 4-9.

9. Ferrara N. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells / N. Ferrara, W. J. Henzel // Biochem. Biophys. Res. Commun.

10. Structure-function analysis of VEGF receptor activation and the role of coreceptors

in angiogenic signaling / F. S. Grunewald // Biochimica et Biophysica Acta. - 2010.

11. Vascular endothelial growth factor is a secreted angiogenic mitogen / D. W. Leung // Science. - 1989. - Vol. 246 (4935). - P. 1306-9.

12. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene / N. Ferrara // Nature. - 1996. - Vol. 380 (6573). - P. 439-42.

13. Redundant roles of VEGF-B and PlGF during selective VEGF-A blockade in mice / A. K. Malik // Blood. - 2006. - Vol. 107. - P. 550-7.

14. VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation / H. P. Gerber // Nat. Med. - 1999. - N 5. - P. 623-8.

15. Ferrara N. VEGF-A: a critical regulator of blood vessel growth / N. Ferrara // Eur. Cytokine Netw. - 2009. - Vol. 20 (4). - P. 158-63.

16. Ferrara N. The biology of VEGF and its receptors / N. Ferrara, H. P. Gerber, J. LeCouter // Nat. Med. - 2003. - Vol. 9 (6). - P. 669-76.

17. Carmeliet P. VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis / Р. Carmeliet, M. Simons // Dev. Cell. - 2010. - Vol. 18 (5). - P. 713-24.

18. Anti-Vascular Endothelial Growth Factor Therapy in Breast Cancer / А. А. Lanahan

19. Niu G. Vascular Endothelial Growth Factor as an Anti-angiogenic Target for Cancer Therapy / G. Niu, X. Chen // Current drug targets. - 2010. - Vol. 11 (8). - P. 1000-1017.

20. The multifaceted circulating endothelial cell in cancer: towards marker and target identification / F. Bertolini // Nat. Rev. Cancer. - 2006. - Vol. 6 (11). - P. 835-45.

21. Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? / S. Rafii // Nat. Rev. Cancer. - 2002. - Vol. 2 (11). - P. 826-35.

22. Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis / S. H. Lee // Annals of Surgical Treatment and Research. - 2015. - Vol. 89 (1). - P. 1-8.

23. Vascular endothelial growth factor 189 mRNA isoform expression specifically correlates with tumor angiogenesis, patient survival, and postoperative relapse in non-small-cell lung cancer / А. Yuan // J. Clin. Oncol. - 2001. - Vol. 19 (2). - P. 432-41.

24. Wang K. Prognostic value of vascular endothelial growth factor expression in patients with prostate cancer: a systematic review with meta-analysis / K. Wang, H. L. Peng, L. K. Li // Asian Pac. J. Cancer Prev. - 2012. - Vol. 13 (11). - P. 5665-9.

25. Prognostic role of vascular endothelial growth factor in prostate cancer: a systematic review and meta-analysis / Z. Q. Liu // Int. J. Clin. Exp. Med. - 2015. - Vol. 8 (2).

Vol. 41 (5). - P. 1217-28.

Vol. 132 (8). - P. 1855-62.

// International J. of Molecular Sciences. - 2014. - Vol. 15 (12). - P. 23024-23041.

GROWTH PROMOTING FACTOR OF ENDOTHELIUM OF VESSELS: BIOLOGICAL PROPERTIES AND PRACTICAL VALUE (LITERATURE

N. L. SvetozarskiyL. A. A. Artifeksova2. S. N. Svetozarskiy3

1SBHE «Nizhny Novgorod regional hospital n. a. N. A. Semashko» (Nizhny Novgorod) 2SBHE NR «Medical information and analysis center» (Nizhny Novgorod) 3FBHE «Privolzhsky regional medical center» Federal Medical Biological Agency (Nizhny

The main data on growth promoting factor of endothelium of vessels are presented in the literature review (vascular endothelial growth factor, VEGF) and spheres of its clinical application. Physiological and pathological methods of vessels formation and factors of angiogenesis regulation are considered in the article. The main VEGF properties and its receptors, their role in regulation of vascular growth in norm are described and at development of malignant neoplasms and retina diseases. Data on the preparations inhibiting the VEGF-mediated angiogenesis are generalized. Some directions of further development of anti-angiogenic therapy are specified.

Keywords: angiogenesis, growth promoting factor of endothelium of vessels, anti-angiogenic therapy, cancer therapy, age macular degeneration.

Svetozarskiy Nikolay Lvovich - candidate of medical science, urologist at SBHE «Nizhny Novgorod regional hospital n. a. N. A. Semashko», e-mail: [email protected]

Artifeksova Anna Alekseevna - doctor of medical science, professor, doctor methodologist at SBHE NR «Medical information and analysis center», e-mail: [email protected]

Svetozarskiy Sergey Nikolaevich - ophthalmologist of ophthalmologic unit at FBHE «Privolzhsky regional medical center» Federal Medical Biological Agency, e-mail: [email protected]

List of the Literature:

1. Carmeliet P. Angiogenesis in health and disease / Р. Carmeliet // Nat. Med. - 2003. - N 9.

2. Ferrara N. Angiogenesis as a therapeutic target / N. Ferrara, R. S. Kerbel // Nature.

2005. - Vol. 438. - P. 967-974.

3. De Falco S. Antiangiogenesis therapy: an update after the first decade / S. De Falco // The Korean J. of Internal Medicine. - 2014. - N 29 (1). - P. 1-11.

4. Carmeliet P. Molecular mechanisms and clinical applications of angiogenesis / Р. Carmeliet,

R. K. Jain // Nature. - 2011. - Vol. 473 (7347). - P. 298-307.

Folkman J. Angiogenesis: an organizing principle for drug discovery? / J. Folkman //

Nature Reviews Drug Discovery. - 2007. - Vol. 6, N 4. - P. 273-286.

Ferrara N. Vascular endothelial growth factor: basic science and clinical progress / N.

Ferrara // Endocr. Rev. - 2004. - Vol. 25. - P. 581-611.

VEGF role in development of neoplastic angiogenesis / V. P. Chekhonin // Bulletin of the RAMS. - 2012. - N 2. - P. 23-34.

Gerstein E. S. Modern ideas of mechanisms of signaling of increase factors as a basis of the effective molecular targeted antitumoral therapy / E. S. Gerstein, N. E. Kushlinsky // Issues of biological, medical and pharmaceutical chemistry. - 2007. - Vol. 5, N 1. - P 4-9. Ferrara N. Pituitary follicular cells secrete a novel heparin-binding growth factor specific for vascular endothelial cells / N. Ferrara, W. J. Henzel // Biochem. Biophys. Res. Commun.

1989. - Vol. 161 (2). - P. 851-8.

Structure-function analysis of VEGF receptor activation and the role of coreceptors in angiogenic signaling / F. S. Grunewald // Biochimica et Biophysica Acta. - 2010.

Vol. 1804 (3). - P. 567-580.

Vascular endothelial growth factor is a secreted angiogenic mitogen / D. W. Leung // Science. - 1989. - Vol. 246 (4935). - P. 1306-9.

Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene / N. Ferrara // Nature. - 1996. - Vol. 380 (6573). - P. 439-42. Redundant roles of VEGF-B and PlGF during selective VEGF-A blockade in mice / A. K. Malik // Blood. - 2006. - Vol. 107. - P. 550-7.

VEGF couples hypertrophic cartilage remodeling, ossification and angiogenesis during endochondral bone formation / H. P. Gerber // Nat. Med. - 1999. - N 5. - P. 623-8.

Ferrara N. VEGF-A: a critical regulator of blood vessel growth / N. Ferrara // Eur. Cytokine Netw. - 2009. - Vol. 20 (4). - P. 158-63.

Ferrara N. The biology of VEGF and its receptors / N. Ferrara, H. P. Gerber, J. LeCouter // Nat. Med. - 2003. - Vol. 9 (6). - P. 669-76.

Carmeliet P. VEGF receptor 2 endocytic trafficking regulates arterial morphogenesis / P.

Carmeliet, M. Simons // Dev. Cell. - 2010. - Vol. 18 (5). - P. 713-24.

Anti-Vascular Endothelial Growth Factor Therapy in Breast Cancer / A. A. Lanahan

// International J. of Molecular Sciences. - 2014. - Vol. 15 (12). - P. 23024-23041.

Niu G. Vascular Endothelial Growth Factor as an Anti-angiogenic Target for Cancer

Therapy / G. Niu, X. Chen // Current drug targets. - 2010. - Vol. 11 (8). - P. 1000-1017.

The multifaceted circulating endothelial cell in cancer: towards marker and target

identification / F. Bertolini // Nat. Rev. Cancer. - 2006. - Vol. 6 (11). - P. 835-45.

Vascular and haematopoietic stem cells: novel targets for anti-angiogenesis therapy? / S.

Rafii // Nat. Rev. Cancer. - 2002. - Vol. 2 (11). - P. 826-35.

Pivotal role of vascular endothelial growth factor pathway in tumor angiogenesis / S. H.

Lee // Annals of Surgical Treatment and Research. - 2015. - Vol. 89 (1). - P. 1-8.

Vascular endothelial growth factor 189 mRNA isoform expression specifically correlates

with tumor angiogenesis, patient survival, and postoperative relapse in non-small-cell lung

cancer / A. Yuan // J. Clin. Oncol. - 2001. - Vol. 19 (2). - P. 432-41.

Wang K. Prognostic value of vascular endothelial growth factor expression in patients with

prostate cancer: a systematic review with meta-analysis / K. Wang, H. L. Peng, L. K. Li //

Asian Pac. J. Cancer Prev. - 2012. - Vol. 13 (11). - P. 5665-9.

Prognostic role of vascular endothelial growth factor in prostate cancer: a systematic

review and meta-analysis / Z. Q. Liu // Int. J. Clin. Exp. Med. - 2015. - Vol. 8 (2).

26. Hughes S. Vascularization of the human fetal retina: roles of vasculogenesis and angiogenesis / S. Hughes, H. Yang, T. Chan-Ling // Invest. Ophthalmol. Vis. Sci. - 2000.

Vol. 41 (5). - P. 1217-28.

27. Gariano R. F. Expression of angiogenesis-related genes during retinal development / R. F. Gariano, D. Hu, J. Helms // Gene Expr Patterns. - 2006. - Vol. 6 (2). - P. 187-92.

28. Vascular Endothelial Growth Factor in Eye Disease / J. S. Penn // Progress in retinal and eye research. - 2008. - Vol. 27 (4). - P. 331-371.

29. West H. Stabilization of the retinal vascular network by reciprocal feedback between blood vessels and astrocytes / Н. West, W. D. Richardson, M. Fruttiger // Development. - 2005.

Vol. 132 (8). - P. 1855-62.

30. Diabetic Retinopathy: Vascular and Inflammatory Disease / F. Semeraro // J. of Diabetes Research. - 2015. - Vol. 2015. - P. 582060.

31. Chong V. Biological, preclinical and clinical characteristics of inhibitors of vascular endothelial growth factors / V. Chong // Ophthalmologica. - 2012. - Vol. 227. Suppl. 1.

32. Folkman J. Tumor angiogenesis: therapeutic implications / J. Folkman // N. Engl. J. Med.

1971. - Vol. 285 (21). - P. 1182-6.

33. Anti-VEGF treatment for myopic choroid neovascularization: from molecular characterization to update on clinical application / Y. Zhang // Drug Design, Development and Therapy. - 2015. - N 9. - P. 3413-3421.

34. Lu X. Profile of conbercept in the treatment of neovascular age-related macular degeneration / X. Lu, X. Sun // Drug Design, Development and Therapy. - 2015. - N 9.

35. Multicenter phase II study of Apatinib in non-triple-negative metastatic breast cancer / X. Hu // BMC Cancer. - 2014. - Vol. 14. - P. 820.

36. Ciombor K. K. Aflibercept / K. K. Ciombor, J. Berlin, E. Chan // Clinical cancer research: an official journal of the American Association for Cancer Research. - 2013. - Vol. 19 (8).

37. Anti-Vascular Endothelial Growth Factor Therapy in Breast Cancer / Т. В. Kristensen

// International J. of Molecular Sciences. - 2014. - Vol. 15 (12). - P. 23024-23041.

38. Guidelines for the management of neovascular age-related macular degeneration by the European Society of Retina Specialists (EURETINA) / U. Schmidt-Erfurth // The British J. of Ophthalmology. - 2014. - Vol. 98 (9). - P. 1144-1167.

Фа́ктор ро́ста эндоте́лия сосу́дов (VEGF ; англ. Vascular endothelial growth factor ) - сигнальный белок , вырабатываемый клетками для стимулирования васкулогенеза (образование эмбриональной сосудистой системы) и ангиогенеза (рост новых сосудов в уже существующей сосудистой системе). В настоящее время известно несколько различных факторов данного семейства (которое, в свою очередь, является подклассом достаточно обширного на сегодняшний день класса факторов роста).

Белки VEGF служат частью системы, отвечающей за восстановление подачи кислорода к тканям в ситуации, когда циркуляция крови недостаточна. Концентрация VEGF в сыворотке крови повышена при бронхиальной астме и сахарном диабете . Основные функции VEGF - создание новых кровеносных сосудов в эмбриональном развитии или после травмы, усиление роста мышц после физических упражнений, обеспечение коллатерального кровообращения (создание новых сосудов при блокировании уже имеющихся).

Повышенная активность VEGF может привести к возникновению различных болезней. Так, со́лидные раковые опухоли не могут вырасти крупнее некоторого ограниченного размера, не получив адекватного кровоснабжения; опухоли же, способные экспрессировать VEGF, могут расти и метастазировать . Избыточная экспрессия VEGF может вызвать сосудистые заболевания тех или иных частей тела (в частности, сетчатки глаз). Некоторые созданные в последние годы лекарственные препараты (такие, как бевацизумаб) способны, ингибируя VEGF, контролировать или замедлять течение таких заболеваний.

Текущие исследования показывают, что белки VEGF - не единственный активатор ангиогенеза. В частности, FGF2 и HGF также являются мощными ангиогенными факторами.

Классификация

Наиболее важную роль в организме человека играет белок семейства VEGF, называемый VEGF-A . В данное семейство также входят плацентарный фактор роста (PGF ) и белки VEGF-B , VEGF-C , VEGF-D . Все они были обнаружены позже, чем VEGF-A (до их обнаружения белок VEGF-А назывался просто VEGF). Наряду с перечисленными были открыты белок VEGF, кодируемый вирусами (VEGF-E ), и белок VEGF, содержащийся в яде некоторых змей (VEGF-F ).

Тип Функция
VEGF-A
  • Миграция клеток эндотелия
  • Митоз клеток эндотелия
  • Активность метанмонооксигеназы
  • Активность интегрина α V β 3
  • Создание просветов в кровеносных сосудах
  • Создание пор в клетках эндотелия
  1. Хемотаксис для макрофагов и гранулоцитов
VEGF-B Эмбриональный ангиогенез (в частности, тканей миокарда)
VEGF-C Ангиогенез лимфатических сосудов
VEGF-D Развитие лимфатических сосудов в лёгких
PIGF Васкулогенез (а также ангиогенез при ишемии, воспалении, заживлении ран и раке)

Активность белка VEGF-А изучалась (как следует из его названия) в основном на клетках эндотелия сосудов, хотя он оказывает влияние на функционирование и других типов клеток (например, стимулирует миграции моноцитов /макрофагов, действует на нейроны, клетки раковых опухолей, почечные эпителиальные клетки). В исследованиях in vitro было показано, что VEGF-A стимулирует митогенез эндотелиальных клеток и их миграции. VEGF-A также усиливает и увеличивает проницаемость микрососудов и был первоначально назван «Сосудистый фактор проницаемости».

Альтернативная классификация

Понятие «белков VEGF» - широкое понятие, охватывающее две группы белков, которые возникают в результате альтернативного сплайсинга матричной РНК (мРНК) одного гена, содержащего 8 экзонов . Эти две группы различаются сайтом сплайсинга терминального 8-го экзона: белки с проксимальным сайтом обозначаются как VEGFxxx, а с дистальным - как VEGFxxxb. Кроме того, альтернативный сплайсинг 6-го и 7-го экзонов изменяет их гепарин-связывающие свойства и аминокислотный состав (у людей: VEGF121, VEGF121b, VEGF145, VEGF165, VEGF165b, VEGF189, VEGF206; у грызунов ортологи этих белков содержат на одну аминокислоту меньше). Эти области имеют важные функциональные последствия для вариантов VEGF, так как сайт сплайсинга терминального участка (8-й экзон) определяет, будут ли белки проангиогенными (проксимальный сайт сплайсинга, используемый в ходе ангиогенеза) или антиангиогенными (дистальный сайт сплайсинга, используемый в нормальной ткани). Кроме того, включение или исключение 6-го и 7-го экзонов обеспечивают взаимодействия с гепарансульфатными протеогликанами и нейропилиновыми корецепторами на поверхности клетки, увеличивая их способность связывать и активировать рецепторы VEGF (VEGFR ). Недавно было показано, что у мышей белок VEGF-C является важным индуктором нейрогенеза в субвентрикулярных зонах, не оказывающим ангиогенных эффектов.

Рецептор VEGF

Все члены семейства белков VEGF стимулируют клеточный отклик, связываясь с рецепторами с тирозинкиназной активностью на поверхности клетки; активизация данных белков происходит путём их трансфосфорилирования. Все VEGF-рецепторы имеют внеклеточную часть, состоящую из 7 иммуноглобулин-подобных областей, один трансмембранный участок и внутриклеточную часть, содержащую тирозинкиназный домен.

Известно три типа рецепторов, которые обозначаются как VEGFR-1, VEGFR-2 и VEGFR-3. Также, в зависимости от альтернативного сплайсинга, рецепторы бывают мембраносвязанные и свободные.

Белок VEGF-A связывается с рецепторами VEGFR-1 (Flt-1) и VEGFR-2 (KDR/Flk-1); при этом рецептор VEGFR-2 выступает как посредник почти во всех известных реакциях клетки на VEGF. Функции рецептора VEGFR-1 определены менее чётко (хотя полагают, что он модулирует сигналы VEGFR-2). Ещё одна функция VEGFR−1 - он может выступать как «пустой» рецептор, изолируя белок VEGF от рецептора VEGFR-2 (что представляется особенно важным при ангиогенезе во время развития зародыша).

Белки VEGF-C и VEGF-D (но не VEGF-A) являются лигандами для третьего рецептора (VEGFR-3), выступающего посредником лимфангиогенеза .

Продукция клетками

Производство белков VEGFxxx может быть вызвано в клетках, которые не получают достаточного количества кислорода. Когда клетка испытывает дефицит в кислороде, она производит один из факторов транскрипции - фактор, индуцируемый гипоксией (HIF ). Данный фактор (помимо других функций - в частности, модуляции эритропоэза , т. е. процесса образования эритроцитов в костном мозге) стимулирует высвобождение белков VEGFxxx. Циркулирующий белок VEGFxxx затем связывается с VEGF-рецептором на клетках эндотелия и активирует действие тирозинкиназы , запуская ангиогенез.

У пациентов, страдающих от эмфиземы легких, было установлено снижение уровня VEGF в лёгочных артериях.

В почках повышенная экспрессия VEGFxxx в клубочках непосредственно вызывает гломерулярную гипертрофию, связанную с протеинурией.

Изменения уровня VEGF могут указывать на ранние стадии развития преэклампсии .

Анти-VEGF терапия

Анти-VEGF терапия играют важную роль в лечении некоторых видов рака (в частности -

При хирургических вмешательствах у больных СД второго типа

При СД 2 типа происходит нарушение баланса ангиогенеза. СД характеризуется гипергликемией и различными нарушениями метаболизма. Они нарушают баланс между проангиогенными и антиангиогенными регуляторами и вести к неадекватному образованию новых сосудов при сахарном диабете (СД). В свою очередь, нарушения ангиогенеза и васкулогенеза являются важными механизмами в развитии сосудистых осложнений СД. Так развитие макрососудистых осложнений сопровождается подавлением интенсивности ангиогенеза и васкулогенеза.
при плохо контролируемом сахарном диабете (СД) процесс заживления мягких тканей замедляется. При этом один из факторов – это снижение уровня местных ростовых факторов, что ограничивает возможность наращивания мягких тканей десны в рамках имплантологических операций. Также доказано, что у пациентов с СД снижается количество продуцируемого фибробластами коллагена, что ведет к замедлению сокращения раны. Нарушение углеводного обмена влечет за собой повышение матриксных металлопротеаз (ММР) и снижение оксида азота (NO), транформирующего фактора роста бета-1 (TGFβ1), что является причиной замедления процессов формирования ЭЦМ. Клинические исследования показывают, что при сахарном диабете нарушения баланса ангиогенеза можно достичь как применением ингибиторов ангиогенеза, так и его стимуляторов. Стимуляция ангиогенеза и васкулогенеза с помощью стволовых клеток и ростовых факторов – перспективное направление лечения недостаточности агниогенеза при сахарном диабете, которая влияет на снижение процесса заживления мягких тканей, формирование макроагниопатий.
Учитывая отмеченное, в послеоперационный период у больных СД представляется перспективным стимулировать процесс ангиогенеза за счет цикотинов и фактора роста эндотелия сосудов.
Известно, что фактор роста эндотелия сосудов и цикотины стимулируют ангиогенез, и таким образом, повышают насыщение тканей кислородом (рО2), что является одним из факторов репарации мягких тканей. Снижение уровня данного фактора роста приводит к замедлению процесса эпителизации. Результаты исследований показывают, что факторы роста и цитокины оказывают определяющее влияние на скорость и качество репаративных процессов у больных сахарным диабетом.
Так в стоматологии при наращивании тканей десны, имплантологических операциях можно использовать коллагеновые мембраны, насыщенные фактором роста эндотелия сосудов или осуществлять процедуру «Плазмодент», основанную на введении богатой тромбоцитами плазмы, взятой из крови пациента. Такая плазма содержит в себе факторы роста и является стимулятором процесса ангиогенеза. В настоящее время имплантологические операции проводятся больным СД только при уровне гликированного гемоглобина менее 6,0. Такого показателя добиваются за счёт временного перевода больного на период операции и постоперационный период на инъекции инсулина. Однако, при СД 2 типа у больного присутствует гиперинсулинемия из-за инсулинрезистентности. Возможно, что использование фактора роста эндотелия сосудов для стимулирования процесса репарации мягких тканей позволит сдвинут показатель гликированного гемоглобина и до более высоких значения, скомпенсировав нарушения агниогенеза от гипергликемии фактором роста эндотелия сосудов. Представляется, что процедуру введения плазмы, насыщенной тромбоцитами, можно использовать при любых хирургических вмешательствах в отношении больных СД.