Что представляет собой сероводород. Чем опасен сероводород в воздухе для человека? Положительная роль сероводорода

Уникальностью Черного моря является то, что оно единственное в котором более, чем 90% объема воды содержит растворенный в ней сероводород. Сероводород присутствует также в водах Красного моря, у побережья Перу, Намибии, в некоторых глубоких фьордах Норвегии, но в гораздо меньшем количестве, чем в Черном море!

В энергетическом отношении (по теплоте сгорания) 1 м3 сероводорода эквивалентен 0,65 м3 метана. Однако, если при сжигании последнего кроме воды образуется диоксид углерода −CO2, то продуктом непосредственного сжигания сероводорода является диоксид серы − SO2, дальнейшая переработка которого позволяет получить, кроме дополнительной теплоты, ценный продукт неорганического синтеза – серную кислоту.

Как известно, водяная толща Чёрного моря состоит из неоднородных слоёв, которые почти не перемешиваются. Верхний слой – «живой»: обычная вода, в которой обитают морские организмы. Нижний слой – «мёртвый»: он содержит в растворённом виде сероводород, и концентрация его настолько велика, что ниже 120-200 метров в Чёрном море жизни почти нет.
Н.Д. Зелинский выдвинул первые гипотезы образования черноморского сероводорода. Впоследствии эти гипотезы оспаривались.

Среди множества версий выделяют три основные: восстановление сульфатов, гниение органических веществ и вулканическое происхождение. Эти версии не противоречат друг другу и, вероятнее всего, являются основными причинами образования глобальной сероводородной линзы. Чтобы понять эти причины, посмотрим на Черное море как на накопитель морской воды, поступающей извне. Еще 9 тыс. лет назад Черное море, подобно Каспийскому, было изолировано от акватории мирового океана. Глобальное потепление повысило уровень океана, и соленые средиземноморские воды хлынули в черноморскую впадину, вытеснив ее более легкую пресную воду к поверхности. В ходе дальнейших событий образовалось три слоя: термоклин, галоклин, пикноклин.

Внешний слой термоклин, питаемый пресной речной водой, подвержен сезонным изменениям температуры и участвует в круговороте воды, обогащаясь кислородом, что делает его пригодным для жизни. Почти весь объем Черного моря содержится в пикноклине, который «питается» соленой водой через Босфорский пролив. Промежуточный слой галоклин, характеризующийся резким изменением солености, не позволяет двум другим обмениваться водами. В результате основная масса Черного моря является практически изолированной. Такие условия, с одной стороны, превратили его в отстойник веществ, поступающих из океана, с другой – сформировали особые бескислородные (анаэробные) условия, которые и являются основной причиной образования сероводорода.

Расслоение Черного моря не позволяет пикноклину получать кислород, что породило уникальную анаэробную биосферу в черноморских глубинах, главную роль в которой играют особые сульфатредуцирующие бактерии. В ходе их жизнедеятельности происходит восстановление сероводорода из сульфатных ионов, которые, в свою очередь, возникают при разложении органических веществ. Такой процесс, называемый сульфатредукцией, происходит во всей толще вод пикноклина, но особенно интенсивен он на поверхности донных отложений, в слое толщиной всего несколько сантиметров.

Сульфатредуцирующие анаэробные бактерии являются основным источником черноморского сероводорода. Бескислородная среда черноморских глубин также сопутствует второй причине образования сероводорода. При гниении отмерших организмов происходит распад белков, содержащих серу. Из-за того, что распад происходит без окисления, конечными его продуктами являются сероводород и сульфатные ионы. Заметим, что последние могут участвовать в дальнейшей сульфатредукции.

Кроме органических источников сероводорода выделяют вулканические. Сероводород, порождаемый вулканической деятельностью тектонических разломов, остается в изолированных черноморских глубинах. Итак, Черное море можно назвать крупным генератором и накопителем сероводорода. Суммарные запасы сероводорода оцениваются в десятки миллиардов тонн при ежегодном приросте 4-9 млн тонн, что говорит о его свойстве возобновляться.

В результате за последние несколько тысяч лет здесь сформировалась сероводородная «линза», занимающая 90 процентов объёма моря!

Несмотря на то, что количество сероводорода в черноморских глубинах практически не ограничено, его концентрация в воде относительно невелика, из-за чего добыча газа связана с выделением его из больших масс воды и очищением от примесей. Дело в том, что до сих пор не разработана рентабельная технология извлечения газа из столь громадных объёмов воды.

Выделению сероводорода из морской воды препятствует следующее:

– низкая концентрация сероводорода, в сотни раз меньшая относительно его насыщенного раствора;

– концентрация недиссоциированной формы H2S не более 15%, преобладающая форма нахождения сероводорода, до 80 – 90%, диссоциированная, т.е. ионная, химически связанная.

Поэтому не удивительно, что, несмотря на многодесятилетнюю историю попыток утилизации сероводорода Черного моря, до сих пор не разработано практически реализуемых технологий выделения его газообразной формы из морской воды.

Существует множество идей технологического решения этого вопроса. Эти технологии можно условно разделить по нескольким категориям.

Одним из альтернативных подходов является выделение сероводорода на глубине. Разработаны способы, основанные на уже существующих технологиях очистки от сероводорода дренажных и пластовых вод. К примеру, аэрация содержащей сероводород воды, предварительно подвергнутой подкислению серной кислотой для снижения затрат и повышения эффективности. При этом необходимое количество серной кислоты можно производить из полученного сероводорода. Подобный способ основан на окислении сероводорода в воде озонированным воздухом, при котором вместе с очищенной водой выделяется сера. Известны способы, в которых подкисление воды совмещается с гидравлическими ударами или с воздействием вибрационных колебаний. Другим вариантом глубинной добычи является использование на глубине особых мембранных абсорбентов. Суть технологии заключается в том, что сероводород в таких абсорбентах растворяется на порядок лучше, что позволяет эффективно выделять его и доставлять на поверхность.

Наибольший интерес представляют собой методы с использованием газлифта по аналогии с фонтанным способом добычи нефти, который, в свою очередь, является наименее затратным в нефтяной промышленности. Фонтанная технология основана на подъеме нефти за счет гидростатического напора и расширения содержащегося в нефти газа.

На Рис. приведена карта акватории Черного моря с указанием глубин расположения верхней границы сероводородной зоны и распределением направления течений морской воды:

Более удачен в плане использования газлифта такой подход. На дно моря опускается трубопровод, изолированный от воды закрытым затвором. Открытие затвора приведет к тому, что вода устремится вверх, теряя давление, в результате чего начинает выделяться сероводород, создавая эффект газлифта. Предполагается, что это создаст постоянный фонтан из высокообогащенной сероводородом воды, который будет действовать, пока в черноморской воде будет присутствовать сероводород. Численные расчеты и проведенные лабораторные эксперименты подтверждают эти смелые предположения.

Тут уместна аналогия с откупоренной бутылкой шампанского. Пока она закрыта, смесь газа и жидкости пребывает в спокойном состоянии. Открыли – изменилось давление, и пузырьки газа начали, высвобождаясь, подниматься вверх и увлекать за собой жидкость. Шампанское выплёскивается из горлышка бутылки. Вот так и сероводород, растворённый в воде, при изменении давления (верхний слой воды из трубы откачали!) будет поднимать газоводяную смесь вверх. В результате получается постоянно действующий газоводяной фонтан.

“Коэрцитивная сила”, соответствующая разности давлений в подъемнике и в открытом море, характеризует эффективность фонтанного подъемника. Чем больше “коэрцитивная сила”, тем эффективнее работа подъемника. Численные расчеты перепада давлений на уровне моря для выбранных параметров дают величину порядка 0,15 МПа, что соответствует подъему сероводородной воды в подъемнике на технологическую высоту до 25 м.

При этом, чем выше концентрация сероводорода в воде, т.е. чем глубже погружен нижний срез водозаборной трубы, тем эффективнее работает подъемник. Эффективность работы подъемника также возрастает при увеличении толщины бессероводородного поверхностного слоя моря в месте забора воды. Это означает, что необходимо осуществлять забор сероводородной морской воды с максимально возможных больших глубин в регионах моря с толстым бессероводородным слоем воды.

Таким образом, фонтанный подъем воды исключает расходование энергии и материалов, что делает этот вариант добычи сероводорода наиболее выгодным и привлекательным.

Способы использования сероводорода можно разделить на два крупных направления. А именно: химическое производство и получение энергии .

Есть многочисленные способы использования сероводорода, но главную роль отводят производству серы и серной кислоты. Серная кислота применяется главным образом для получения минеральных удобрений, однако есть целый ряд прочих продуктов, в состав которых она входит: от свинцовых аккумуляторов и нефтепереработки до химических волокон и пищевых добавок. Ключевой момент заключается в том, что сам процесс выработки кислоты включает в себя этап сжигания, позволяющий использовать полученное тепло для передачи теплоты отопительной системе и получения электрической энергии.

Удельная теплота сгорания природного газа всего лишь в два раза превосходит теплоту сгорания сероводорода. Учитывая упомянутую ранее неисчерпаемость черноморского сероводорода, можно отметить перспективность его использования как готового топлива. В противовес этому существует ряд проблем горения сероводорода, которые требуют иного подхода к созданию и эксплуатации установок для его сжигания.

Главной проблемой является сероводородная коррозия металлов, которая приводит в аварийное состояние обычный котел всего за не- сколько дней. Поиски решения этой проблемы показали, что сероводородная коррозия создает целый комплекс пагубных явлений. К примеру, перенапряжение во время аварийной остановки котла и термо- циклическая усталость металла, фактически разрушающая котел. Но эти поиски не оказались напрасными. Была разработана оптимальная конструкция котла, учитывающая весь спектр коррозийных явлений. Полученный при сжигании в котле сернистый газ направляется на дальнейшую переработку, в ходе которой и образуется серная кислота.

Вторым основным продуктом сероводорода является сера, которая также находит широкое применение в промышленности.

В основном это важный элемент химического производства, но особые перспективы она имеет в строительной и дорожной индустрии. Замена битума на серу не только снижает цену на асфальт, но и улучшает его качество. Сероасфальт и серобетон являются влагонепроницаемыми, эрозийно и химически стойкими материалами, что снижает затраты на ремонт.

Учитывая извечную важность дорожной проблемы в России, следует принять во внимание и такой вариант использования черноморского газа. Существует множество способов производства серы, которые можно разделить на химические и термические. Химические способы различны между собой по сложности, затратам и энергоемкости, но благодаря более низким энергетическим затратам химическое выделение серы предпочтительнее термического. Все термические методы основаны на разложении сероводорода. Метод непосредственного термического разложения, который заключается в нагреве сероводорода, обладает высокой энергоемкостью и довольно высоким процентом непереработанного сероводорода.

Альтернативой термическому служит плазменный метод. Он позволяет переработать практически весь сероводород, однако для этого требуется газ с высоким его содержанием. Снизить энергозатраты позволяет плазмохимический метод. Часть получаемого при разложении водорода расходуется на выработку плазмы, благодаря которой и разлагается исходный сероводород. Такая плазма позволяет более эффективно разлагать практически весь сероводород вне зависимости от его концентрации в газе, что делает этот метод менее требовательным и энергозатратным. Плазменная переработка сопровождается выделением водорода, который уже можно использовать для производства электроэнергии.

Черное море является самым большим природным концентрированным резервуаром сероводорода в мире. В связи с непрерывным накоплением сероводорода в Черном море, который необходимо рассматривать как энергоаккумулирующее вещество, становиться целесообразным разрабатывать технологии для его добычи и переработки. Существующие методы и технологии имеют ряд недостатков, которые пока не позволяют их эксплуатировать с экономической и экологической точек зрения. Но зарубку на память по поводу его возможного использования нужно сделать.

Литература:

"Альтернативная сероводородная энергетика Черного моря."Г.Н. Бондаренко, Б.В. Борц, Б.А. Горлицкий, И.М. Неклюдов, В.И. Ткаченко / 2009. - c. 12-19

"СЕРОВОДОРОД ЧЕРНОГО МОРЯ" В.В. Харченко, А.А. Долгий.

"Как поставить сероводород Чёрного моря на службу людям?" Татьяна Максименко.

"Водородная энергетика на основе сероводородных ресурсов Черного моря." И.М. Неклюдов, Б.В. Борц, О.В. Полевич.

Сероводород в зависимости от концентрации оказывает как положительное, так и отрицательное действие на жизнедеятельность организма и его физиологические процессы . Это химическое соединение может образовываться во внутренних средах или поступать из внешнего окружения. Влияние сероводорода на организм человека многогранное, как полезное, так и отравляющее, способное вызвать мгновенную смерть.

Что такое сероводород и его полезные свойства

Сероводород (сернистый водород) – это газ без цвета, сладковатый по вкусу, с сильным выраженным запахом, пахнет тухлыми яйцами . Вещество плохо растворяется в воде, но хорошо в спирте, он тяжелее воздуха. Газ легко воспламеняется при нахождении в воздухе в концентрации от 5 до 45%. Горит в воздухе голубоватым пламенен.

Сероводород распространён в водных природных условиях, например, в морях на глубине 150-200 м.

Вещество образуется в процессе гниения белковых соединений, которые содержат в своём составе аминокислоты с серой. Сероводород в незначительном количестве вырабатывается в кишечнике человека.

Эндогенный, образующийся в организме, сероводород важен для нормальных физиологических процессов. Он принимает активное участие в синаптической передаче нервных импульсов. Положительно влияет на головной мозг, способствует развитию памяти и восприятию новой информации.

Газ является спазмолитиком, при его использовании расслабляются кровеносные сосуды мелкого калибра и гладкая мускулатура полых органов. Поэтому сероводород – это профилактика развития сердечно-сосудистой патологии.

Вещество регулирует внутриклеточные обменные процессы .

В небольших объёмах действует как антиоксидант, снижает выраженность воспаления тканей.

При попадании в кровь, отравляющее вещество разрушает гемоглобин, освободившееся при этом железо вступает в реакцию с H 2 S, и формируется чёрный сульфит. Он окрашивает кровь в тёмный цвет.

Токсическое действие газа

Сероводород, находящийся в воздухе, опасен для человека (класс опасности-2). Газ попадает внутрь организма ингаляционным и трансдермальным (через кожу) путём .

Внешние источники отравляющего вещества:

  • полигоны твёрдых и жидких отходов, в которых активно проходят процессы гниения;
  • выгребные ямы, канализация, очистные водные сооружения, туннели;
  • нефтеперерабатывающая, химическая и газовая промышленность;
  • предприятия по производству целлюлозы, чугуна, асфальтной крошки;
  • химические лаборатории.

Сероводород чрезвычайно токсичен и опасен для здоровья. При содержании высокой дозы в атмосфере достаточного одного вдоха, чтобы вызвать летальный исход.

Попадая в организм, вещество окисляется и образует неорганические соединения. При вдыхании сероводород парализует обонятельные нервы, и человек перестаёт ощущать запах газа, который оказывает смертельное действие. Это часто приводит к сильным отравлениям из-за неспособности своевременно распознать и прекратить контакт с токсическим источником.

При проникновении во внутренние среды организма механизм токсического действия направлен на поражение нервной и кроветворной системы, костный мозг.

Газ оказывает поражающее воздействие на слизистые оболочки. Из-за разрушения гемоглобина приводит к выраженной гипоксии (кислородное голодание). Такое системное влияние нарушает функциональность всех органов. Первым под токсическое отравление попадает мозг.

В жаркое время года возрастает вероятность более сильного действие газа на человека . Это связано с тем, что активность ядовитого соединения при высоких температурах увеличивается, возрастает его летучесть. Газ легко и беспрепятственно проникает через кожу и слизистую дыхательных путей.

Токсический механизм действия запускается уже при содержании сероводорода в воздухе в объёме 0,06%. При концентрации не более 150 мг/л раздражаются слизистые оболочки. Количественные показатели 1,2-1,8 мг на литр вдыхаемого воздуха вызывают смерть. Содержание алкоголя в организме усиливает действие яда.

Признаки отравления сероводородом

При вдыхании воздуха, отравленного вредными сероводородными соединениями, человек начинает чувствовать недомогание, появляется головокружение и боли в височной и затылочной части головы . Постепенно нарастает тошнота. Во рту появляется привкус металла.

Лёгкое отравление


Легкая степень отравления проявляется раздражающим действием на слизистые оболочки глаз и дыхательных путей
. Появляется жжение конъюнктивы, рези и боли глазного яблока. Начинается сильное слезотечение, которое приводит к мацерации кожи (размягчение). Развивается боязнь солнечного света. Под воздействием газа сокращаются круговые мышцы вокруг глаз, веки интенсивно смыкаются и отекают. Склеры становятся красными.

Слизистая носа воспаляется, образовывается обильный экссудат. У пострадавшего развивается насморк . Горло раздражено, зудит и першит. Появляются боли за грудиной и кашель. При прослушивании слышаться сухие хрипы. Рефлекторно возникает спазм бронхов.

Средняя степень отравления


Усиливаются боли в голове, нарастает общая слабость
. Координация движений нарушена. Общее состояние человека быстро меняется, от возбуждения переходит в обморок. Кожа становится синей, учащается сердцебиение, артериальное давление падает.

На фоне сбоя функциональности внутренних органов бывает непроизвольный акт дефекации в виде жидкого стула и недержание мочи. Температура тела стремительно повышается. Из-за поражения дыхательной системы развивается воспаление бронхов и лёгких.

Нарушается фильтрация почек . В моче обнаруживаются цилиндры и белок.

Тяжёлое отравление

При тяжёлой форме отравления сероводородом состояние и жизнь пострадавшего находится под угрозой. Серьёзно нарушена работа жизненно важных органов – сердца, лёгких, почек, мозга, печени .

Человек находится в состоянии комы. Этому предшествуют такие признаки:

  • апатия;
  • потеря в пространстве и времени;
  • оглушённость;
  • снижение эмоциональных проявлений;
  • коллапс.

Развивается стойкая энцефалопатия – функциональные сбои в работе нервной системы из-за недостаточного кровоснабжения мозга. В результате кислородного голодания появляется шум в ушах, нарушение слуха, двоение в глазах, потеря памяти, появление галлюцинаций, бреда, расстройства речи. В тяжёлых случаях – временная потеря зрения.

Находясь в состоянии комы, у пострадавшего развивается сильный отёк внутренних органов, что приводит к недостаточности дыхательной системы и сердца .

Смертельное отравление сероводородом

Апоплексическая форма поражения организма развивается внезапно и молниеносно. Условия для такого отравления – содержание газа в воздухе в количестве 1000 мг на м 3 .

Человек мгновенно теряет сознание. Поражение нервной системы вызывает эпилептические судороги скелетных мышц.

Смерть наступает в результате паралича дыхательного центра в продолговатом мозге . Иногда парализуется миокард – мышечная оболочка сердца.

Подострое отравление

При малых концентрациях газа в воздухе симптомы отравления проявляются постепенно и выражены слабо:

  • головные боли;
  • периодическое повышение температуры тела до 37,5°C ;
  • озноб;
  • диспепсические расстройства ЖКТ;
  • слюнотечение;
  • жидкий стул темно-зелёного или чёрного цвета;
  • быстрая утомляемость, вялость, снижение работоспособности;
  • потливость, долго не проходящий насморк;
  • пересыхание слизистых, болезненное глотание;
  • конъюнктивит;
  • воспаление трахеи и бронхов.

Хроническое отравление

Такой вид отравления возможен в случае несоблюдения техники безопасности на производстве с применением сероводорода, где есть потенциальный риск токсического воздействия газа на человека .

Признаки:

  • хронические болезни глаз, верхних отделов дыхательной системы (риниты, ларингиты, фарингиты, синуситы);
  • систематические расстройства функциональности ЖКТ;
  • вегето-астенический синдром – слабость, потеря аппетита, нарушение сна, замедленное сердцебиение, падение артериального давления, полиневриты.

Осложнения после отравления сероводородом

Если человек перенёс острую или подострую интоксикацию отравляющим газом, в этом случае часто развиваются неблагоприятные последствия и осложнения со стороны внутренних органов.

У пострадавшего постоянно присутствуют боли в голове . Иногда бывают лихорадки. Чаще присоединяются инфекционно-воспалительные заболевания дыхательной системы – бронхиты, пневмонии, отёки паренхимы лёгких, нарушения функции газообмена.

При поражении сердечной мышцы развивается её дистрофия, которая впоследствии приводит к инфаркту миокарда.

Наблюдаются органические поражения центральной нервной системы, менингиты и энцефалиты .

В целом сероводород влияет на организм человека негативно, даже при невысоких концентрациях. Газ очень токсичен. Опасность создаёт тот факт, что человек быстро адаптируется к едкому запаху и перестаёт ощущать его. Поэтому не всегда своевременно оказывается первая помощь пострадавшему.

Сероводород (H 2 S ) - очень канцерогенный, токсичный газ. Имеет резкий характерный запах тухлых яиц.

Получение сероводорода.

1. В лаборатории H 2 S получают в ходе реакции между сульфидами и разбавленными кислотами:

FeS + 2 HCl = FeCl 2 + H 2 S ,

2. Взаимодействие Al 2 S 3 с холодной водой (образующийся сероводород более чистый, чем при первом способе получения):

Al 2 S 3 + 6H 2 O = 2Al(OH) 3 + 3H 2 S.

Химические свойства сероводорода.

Сероводород H 2 S - ковалентное соединение, не образующее водородных связей, как молекула Н 2 О . (Разница в том, что атом серы больший по размеру и более электроотрицательный, чем атом кислорода. Поэтому плотность заряда у серы меньше. И из-за отсутствия водородных связей температура кипения у H 2 S выше, чем у кислорода . Также H 2 S плохо растворим в воде, что также указывает на отсутствие водородных связей).

H 2 S + Br 2 = S + 2HBr,

2. Сероводород H 2 S - очень слабая кислота, в растворе ступенчато диссоциирует:

H 2 S H + + HS - ,

HS - H + + S 2- ,

3. Взаимодействует с сильными окислителями:

H 2 S + 4Cl 2 + 4H 2 O = H 2 SO 4 + 8HCl,

2 H 2 S + H 2 SO 3 = 3 S + 3 H 2 O ,

2 FeCl 3 + H 2 S = 2 FeCl 2 + S + 2 HCl ,

4. Реагирует с основаниями, основными оксидами и солями, при этом образуя кислые и средние соли (гидросульфиды и сульфиды):

Pb(NO 3) 2 + 2S = PbS↓ + 2HNO 3 .

Эту реакцию используют для обнаружения сероводорода или сульфид-ионов. PbS - осадок черного цвета.

Жители столицы уже не первый раз задаются вопросом, почему пахнет сероводородом. Жалобы в Роспотребнадзор, МЧС и другие инстанции поступают от москвичей регулярно. Люди мучаются от неприятного аромата то ли скисшей капусты, то ли тухлых яиц, который возникает в различных районах города волнообразно, мешает нормально работать и отдыхать.

Источники выброса:

В процессе поиска источника зловония в СМИ появились разные версии, некоторые из них очень необычные. Пока ни одна не подтвердилась:

  • Очистные работы на мусорных полигонах в «Некрасовке» и «Кучино». На сегодняшний момент эти версии не подтвердились.
  • Выброс на мясокомбинате на Волгоградском проспекте.
  • Разжижение грунта в столице из-за движения Русской платформы. Через разломы из самых глубин Земли на поверхность вырываются газы, в том числе и химически агрессивные. Это мнение главного геолога партии региональных геохимических исследований филиала ВИМСа, кандидата геолого-минералогических наук Анатолия Пронина.
  • В соцсетях выдвигают и совсем необычную версию источника выброса. Процесс активной материализации демонических сущностей. А причина - ритуальные жертвоприношения. Кстати, в пользу этой версии свидетельствует и то, что очевидцы отмечали запах не совсем сероводорода, а квашеной капусты и горелых костей. Именно это и вызывает как запах серы и гнилой капусты, так и резкие колебания погоды (за считанные часы, например).

Так что же такое сероводород? Откуда он берется и безопасен ли для человека?

Характеристика сероводорода

Сероводород - это бесцветный газ, обладающий запахом тухлых яиц. Образуется при разложении органики.

Сероводород тяжелее воздуха, но легче воды, поэтому может накапливаться в канавах, оврагах, ямах и загрязненных колодцах.

Химическая формула — H2S

Физические свойства сероводорода

Температура плавления - 85,5°С, температура кипения - 60,7°С. Термически устойчив, но при температурах больше 400°C разлагается на простые вещества - S и H2.

Металлы при воздействии H2S покрываются налетом сернистых соединений. Это не касается только благородных типа золота и платины.

Источники сероводорода

Природные источники:

  • в небольших количествах в природном газе,
  • входит в состав попутного нефтяного газа,
  • в составе газообразных вулканических выделений,
  • присутствует в сернистых источниках (Мацеста, Пятигорск),
  • в глубоких слоях морской воды.

Образуется сероводород там, где гниют белки, содержащие цистеин или метионин. Как ни удивительно, присутствует в кишечных газах людей и млекопитающих.

В крупных городах, как правило, присутствуют производства, побочным продуктом которых является сероводород. К таким производствам можно отнести предприятия по переработке нефти и угля, очистке сточных вод, производство красок, целлофана, сахара, вискозы и др.

Влияние сероводорода на организм человека

Сероводород для человека в больших количествах является опасным ядохимикатом. Это очень коварное вещество, так как человек чувствует только маленькие концентрации газа в воздухе, а при большой концентрации рецепторы перестают его распознавать.

Небольшое количество сероводорода в организме человека присутствует постоянно, оно образуется в процессе гниения белков в кишечнике.

Чем опасен сероводород?

Вдыхание больших концентраций H2S, а также введение в организм большого количества сернистых солей губительно для здоровья. При содержании сероводорода в воздухе в количестве 0,1% человек погибает через 10 минут.

Сероводород на человека имеет местное и общее действие.

Общее воздействие проявляется в угнетении и парализации клеточного дыхания.

Этот газ легко вступает в реакцию с ионами железа, содержащимися в составе молекул гемоглобина. В результате образуется сульфид железа, кровь при этом чернеет и теряет способность транспортировать кислород.

Местное воздействие выражено раздражением конъюнктивы, слизистой носа, глотки и дыхательных путей. У человека появляется жжение, слезотечение, кашель, хрипота, может появиться боязнь света.

При длительном воздействии сероводорода на организм может развиться хронический конъюнктивит, воспаление глаз, эрозии и помутнения роговой оболочки, возникают бронхиты, риниты, слюнотечение и лярингиты.

Симптомы отравления сероводородом

Маленькие, но частые воздействия сероводорода на организм способствуют появлению симптомов хронического отравления:

  • анемия,
  • снижение веса,
  • раздражительность, нарушение сна, головные боли,
  • диспепсия.

Стадии отравления и лечение

Существуют три стадии отравления сероводородом.

При легкой стадии, чтобы восстановиться человеку достаточно прилива свежего воздуха, покоя, анальгетиков, витаминов с железом и капель в глаза с новокаином.

При среднем или тяжелом отравлении, когда наблюдается головокружение, синюшность, рвота, удушье, нарушение сердечного ритма, требуется госпитализация и лечение с помощью внутривенных уколов с митиленовым синим или хромосмоном.

Кроме того, при синюшности, сердечной недостаточности, нарушениях сердечного ритма делаются инъекции кофеина, кордамина, норадреналина. При коматозном состоянии выполняется реанимирующая терапия.

Как измерить концентрацию сероводорода?

Измерить количество сероводорода в воздухе своей квартиры очень просто, установив дома маленький прибор под названием АНКАТ-7631. Прибор настраивается так, что при превышении нормы газа, выдается звуковой сигнал.

Кроме того, можно пригласить специальные службы для замера сероводорода в воздухе помещения.

Лечение сероводородом

Опасен сероводород только в больших концентрациях, в малых дозах он даже полезен и используется в медицине. Часто врачи назначают при терапии сероводородные ванны, не стоит пугаться - они полезны и абсолютно безопасны.

Сероводород просто необходим для протекания некоторых физиологических процессов, например - работы сердца и сосудов, важный элемент для нервной системы и работы памяти, способствует эрекции, является хорошим спазмолитиком.

Выработка сероводорода организмом запрограммирована генетически. Если происходит мутация гена, отвечающего за этот процесс, то могут появляться такие заболевания как гипертония, атеросклероз, болезнь Альцгеймера и Паркинсона.

Исследовать влияние сероводорода на организм, начатые еще в 1998 году, до сих пор продолжаются, так как полностью не раскрыты многие механизмы его воздействия. Но уже достоверно известно, что сероводород участвует в процессах расширения сосудов и передачи нервных импульсов.

Почему вода пахнет сероводородом?

Существуют сероводородные источники, которые могут быть использованы при добыче воды. Бутилированная вода, разлитая из таких источников, может иметь запах сероводорода.

19 марта Москву не в первый раз накрыл смог и чувствовался запах сероводорода. СМИ сообщили о том, что в городе превышено содержание сероводорода и оксида азота.

По данным Мосэкомониторинга, их концентрации примерно в 2 раза превысили ПДК максимальную разовую на юге столицы. Ключевое слово – «максимальная разовая». Если цифры были названы верно, то это много. Очень. При такой концентрации без вреда для здоровья можно дышать пару часов. В отличие от ПДК среднесуточной, при которой можно дышать десятки часов и сутки. Сколько эти концентрации продержались (или еще держатся) в Москве неизвестно.

Данные Мосэкомониторинга с 17.03 по 19.03, как видно на графике, для Люблино концентрация превышена почти в 2 раза по H2S (сероводород) и NO (Оксид азота).

Данные Мосэкомониторинга с 17.03 по 19.03, как видно на графике, в районе станции мониторинга МНПЗ-Головачева концентрация превышена почти в 3 раза по H2S (сероводород) и в 2 раза NO (Оксид азота).

Сероводород – газ второго класса опасности (выше только первый). Является сильным нейротоксином, в том числе связывается с железом, вызывая гипоксию. Также поражает дыхательные пути. При этом порог ощутимости запаха составляет 0,014-0,03 мг/м3. Значительный запах - при 4 мг/м3, а тяжелый – при 7-11 мг/м3. То есть, если вы хоть немного чувствуете запах сероводорода рядом со своим домом или офисом, значит, уже можно фиксировать превышение ПДК. При острых отравлениях H2S возникает жжение и боль в горле при глотании, конъюнктивит, одышка, головная боль, головокружение, слабость, рвота, тахикардия, возможны судороги.

Оксид азота – газ третьего класса опасности, но очень быстро преобразуется в атмосфере в диоксид азота – газ второго класса опасности. Поражает дыхательные пути, ухудшает их проводимость даже в небольших концентрациях.

Диоксид азота также обладает неприятным запахом, как и сероводород. К запаху сероводорода и диоксида азота нос достаточно быстро привыкает, и мы перестаем его ощущать, не смотря на превышение.

Важно знать: марлевые повязки бесполезны против вредных газов, в том числе и H2S.

Людям с заболеваниями дыхательных путей (астма, эмфизема легких и т.п.) лучше переждать выброс в другом районе или за городом, на всякий случай, или как минимум остаться в эти дни дома. Там больше шансов защититься от вредных газов. Закрыть окна недостаточно – квартира не подводная лодка, есть множество щелей. Как минимум – включить очиститель воздуха с хорошим и, главное, новым адсорбционным (угольным) фильтром. Самый лучший вариант – это «противогаз для квартиры»: система (для офисов и крупных зданий), или ; обязательно с новыми адсорбционными (угольными) фильтрами. Такая система приточной вентиляции даст воздух, необходимый для дыхания и снизит концентрацию токсинов. Бытовые кондиционеры, мойки, ионизаторы не помогут – свежего воздуха не дадут и от токсичных газов не защитят.

Мнение эксперта в области чистоты воздуха, Михаила Амелькина:

«Вообще, меня сегодня спросили журналисты – как я думаю, что вдруг такое случилось в Москве, что почти каждый месяц – новые выбросы. Моё мнение – ничего неожиданного не случилось. Просто мы начинаем наконец понимать, что живем в новой экологической реальности. Техногенное будущее уже наступило, просто мы на него не обращали внимания. В Китае это поняли 5 лет назад, там смотрят уровень загрязненности воздуха на смартфонах, как прогноз погоды. Ну и адаптируются к новой реальности. Если уехать из города не вариант – значит надо думать о специальной технике для защиты от современной экологии. Создать безопасный микроклимат хотя бы дома. Повышать свой уровень знаний о воздухе и видах загрязнений. Это уже случилось с водой, теперь дошло и до воздуха. При текущих темпах загрязнения атмосферы по всему миру стоит удивляться лишь тому, что мы так поздно это осознали».