Какие источники света являются естественными. Оптические явления в природе. Источники света — Гипермаркет знаний

В давние времена человечество думало, что мы можем видеть благодаря лучам-щупальцам, которые выходят из глаз, как бы пробуя на ощупь предметы. Кажется, нелепо и смешно. Но на самом деле, Откуда он исходит? Различают естественные источники света и искусственные. Современные представления гласят, что свет - это электромагнитные волны или поток фотонов. На самом деле свет является излучением, но той его части, которая может восприниматься глазом. Именно поэтому его называют При распространении света обнаруживаются его волновые качества. О которых поговорим ниже.

Свет

Что же это такое? Прямо скажем, это электромагнитная волна. Она воспринимается глазами человека. Правда, существуют границы восприятия - от 380 до 780 нм. При более низких показателях идет поток ультрафиолета, который человек видеть не может, зато ощущает. На коже он проявляется как загар. Существует также инфракрасное излучение, которое способны видеть только некоторые живые организмы, а людьми это воспринимается как тепло.

Свет бывает разного цвета. Если вспомнить радугу, она является обладательницей семи цветов. Присутствующий в ней фиолетовый цвет образуется пучком длины волн 380 нм, красный - 625, а вот зеленый - 500, больше чем фиолетовый, но меньше чем красный. От многих искусственных источников света исходят белого цвета волны. Белый свет происходит, когда смешиваются все остальные основные цвета - это красный, оранжевый, желтый, зеленый, голубой, синий и фиолетовый.

Свойства

Благодаря опытам удалось установить, что свет имеет электромагнитную природу. Проще говоря, свет - это электромагнитное излучение, которое можно увидеть.

Свет может похвастаться тем, что имеет способность проходить через прозрачные вещества и тела. Благодаря этому солнечный свет через атмосферу легко проникает на землю. Но при этом он преломляется. Когда на пути света встречается непрозрачное тело или предмет, то свет отражается от них. Таким образом мы принимаем отраженный цвет глазом и видим не только цвет, но и форму.

Определенная часть света поглощается предметами, и они нагреваются. Светлые предметы нагреваются не так сильно, как темные, так как поглощают больше света, а отражается меньше. Именно поэтому они выглядят темными. Львиная часть информации о том, что нас окружает, поступает именно через зрение. Благодаря ему мы все анализируем. Хорошее зрение и высокий уровень работоспособности очень связаны с освещением.

Источники

Тела, от которых исходит свет, и являются источниками света. Существуют естественные и искусственные источники света. Самый популярный и жизненно необходимый естественный источник света - Солнце, а именно солнечная радиация - лучистый поток звезды, который достигает поверхности нашей планеты в виде прямого и рассеянного света. В естественном свете, а если быть точнее в его спектре, находятся ультрафиолетовые лучи, которые просто необходимы для человека. Диффузность - вот характерная черта естественного освещения. Это благоприятно для зрения. После того как мы разобрались со многими понятиями, можно приступить к объяснению что же это такое - искусственные и естественные источники света.

Искусственные источники

До конца 19 века единственным являлся огонь, во всех его интерпретациях. Позже активно стартовало бурное развитие электрических источников света. За почти 130 лет их существования огонь был практически полностью вытеснен - появились керосиновые лампы, свечи. Они и теперь используются, когда случается авария на станции, когда внезапно пропадает освещение, для романтического вечера, для создания соответствующей обстановки. В турпоходах, когда разрядились фонарики, используют Для более обширного освещения можно развести костер.

Костер - искусственный или естественный источник света? Следует разобраться. Пламя сгорающих сухих сучьев, а также пламя свечи, газовой горелки и так далее - это искусственные источники. Хотелось бы отметить одну особенность. Искусственными источниками света могут управлять люди.

Рассудим так: в принципе, костер горит самостоятельно, отдавая еще и тепло. Возле него можно греться, видеть в темное время суток друзей, сидящих напротив и поющих под гитару. Вроде костер — это естественный источник света. Он дает свой неотраженный свет, как Луна. Но тут начинает костер гаснуть, появляется необходимость подкинуть дров. Чем больше дров, тем больше пламя. Значит, им можно управлять. Более того, изначально костер создали сами туристы. А искусственными источниками называются те, что создал человек. Отсюда напрашивается вывод: костер - это всё-таки искусственный источник света.

Искусственным также являются технические устройства, самого разнообразного строения. Это лампы накаливания, прожекторы, электрические светильники и прочее. Существуют тела, которые не могут излучать самостоятельно, а источают отраженный свет, например, Луна.

Более детально рассмотрим, какие источники света являются естественными.

Естественные источники

Все объекты, от которых струится природный свет, следует отнести к натуральным источникам. Они и есть естественные источники света. Неважно, какое идет испускание волн, как основное или вторичное свойство. Природные источники света играют огромную роль в жизни всех живых организмов. Природные источники в природе не контролируются человеком:

  • Солнечный свет.
  • Огонь, естественный источник света.
  • Свет звезд.
  • Свечение разнообразных животных и растительных организмов.

И это далеко не весь список. Можно перечислить еще естественные источники света. Примеры: Солнце, палящее июльским днем, звезды, которые можно наблюдать ночью и складывать их в причудливые созвездия, молния, разрывающая рыхлые облака, комета с роскошным хвостом или полярное сияние, переливающиеся и вызывающее восхищение. Естественным светом можно считать поблескивающих в траве, как маленькие крупинки золота, насекомых и некоторые виды рыб, важно плывущие почти на морском дне.

Межзвездный газ

Разряженная газовая среда заполняет пространство между звездами. Газ прозрачен. Основная часть межзвёздного газа наблюдается ближе к плоскости Галактики. Этот слой имеет толщину много сотен парсек. Химический состав похож на большинство звезд - это водород, гелий и немного тяжелых частиц. Газ находится в атомном, молекулярном и ионизированном виде, все зависит от плотности и температуры. Газ поглощает а они взамен отдают ему имеющуюся энергию. Ультрафиолетовое излучение, исходящее от горячих звезд, начинает нагревать газ. Затем сам газ начинает излучать свет. Человек наблюдает его как светлую туманность.

Биолюминесценция

Хитрое слово обозначает умение живых организмов светиться. Это умение достигнуто самостоятельно либо при помощи симбионтов. Греческое слово «биос» означает жизнь. А латинское «люмен» - свет. Такой талант, как создание света, принадлежит не каждому. Для этого необходимы специально светящиеся органы и обладание более развитым организмом. Например, в фотофорах рыб, в особых органоидах у одноклеточных эукариот, в цитоплазме у бактерий. Вспомним о светлячках и кое-каких водных организмах, которые обитают на дне океанов (глубоководная каракатица, радиолярия). Биолюминесценция — это продукт химических процессов, энергия, которая освобождается, при этом начинает выделяться в виде света. Другими словами, это специальный вид хемилюминесценции.

Радиолюминесценция

Этот процесс вызван влиянием ионизирующего излучения. Такие химические соединения, которые излучают гамма- и рентгеновские лучи, альфа-, бета-частицы, употребляют для появления радиолюминесцентного слоя в некоторых веществах. Например, красители, которые состоят из смеси сульфида цинка и вещества-источника ионизирующей радиации, излучают свет длительный период времени. Этот период измеряется годами и даже десятилетиями. Такие вещества нашли широкое применение в специальных красках. Ими покрывали циферблаты часов, приборов.

Распространение света

Свет не имеет способности огибать препятствия, которые встречает на своем пути. Он распространяется прямолинейно. И никак иначе. Поэтому за предметом, который не обладает прозрачными свойствами, образуется тень. Не всегда тень бывает черной. Так как туда попадают рассеянные и отраженные лучи света, которые исходят от других предметов. Особенно хорошо это знают художники.

Лучи света не способны пройти сквозь темную преграду. Например, если Луна оказывается между Солнцем и Землей, отсюда и возникают солнечные затмения.

Источники света. «Горячие» и «холодные»

Рассмотрим естественные источники света. Примеры теплых источников - это Солнце. Оно является не только основным источником света, но и тепла. Поэтому в понимании человечества свет - значит тепло. Раскаленная лава, которая быстро стремится вниз по склону вулкана, тоже выделяет огромное количества тепла, но света несколько меньше.

«Холодный» свет в своей жизни каждый встречал. Это светлячки, гнилушки. Но тела обладателей такого света не нагреваются.

Точечный источник света

При изучении световых явлений появилось понятие «точечный источник света». Не является открытием то, что все источники света имеют свой размер. Естественным источником света является звезда. Солнце - это желтый карлик. Есть звезды гораздо габаритнее, но воспринимаются людьми как точечные источники света, ведь они находятся на громаднейшем расстоянии от нашей планеты.

В заключение хотелось бы отметить еще естественные источники света в нашем бренном существовании - это радость и счастье! Пусть они никогда вас не покидают и освещают ваш жизненный путь.

Об окружающеммире дает нам зрение. Однако видеть окружающий мир мы можем только потому, что существует свет. С этого параграфа мы начинаем изучение световых, или оптических (греч. optikos - зритель­ный) явлений, т. е. явлений, непосредственно связанных со светом.

1. Наблюдаем свтовые явления

Co световыми явлениями мы встречаемся каждый день на протяже­нии всей жизни, ведь они являются частью естественных условий, в кото­рых мы живем. Некоторые из световых явлений кажутся нам настоящим чудом - например, миражи в пустыне, полярные сияния. Тем не менее, согласитесь, что и более привычные для нас световые явления: блеск ка­пельки росы в солнечных лучах, лунная дорожка на плесе, семицветный мост радуги после летнего дождя, молния в грозовых тучах, мерцание звезд в ночном небе - тоже являются чудом, так как они делают мир вокруг нас замечательным, полным волшебной красоты и гармонии.


2. Выясняем, что такое источники света

  • Физические тела, атомы и молекулы которых излучают свет, называют источ­никами света.

Оглянитесь вокруг, обратитесь к своему опыту - и вы, без сомнения, назовете много источников света: Солнце, вспышка молнии, огонь костра, пламя свечи, лампа накаливания, экран телевизора, монитор компьютера и т. п. (рис. 3.1). Свет могут излучать также организмы (некоторые морские животные, светлячки и др.).

Рис. 3. Некоторые источники света

В ясную лунную ночь мы можем доволь­но хорошо видеть предметы, освещенные лун­ным сиянием.

3. Различаем естественные и искусственные источники света

В зависимости от происхождения раз­личают естественные и искусственные (со­зданные человеком) источники света.

К естественным источникам света отно­сятся, например, Солнце и звезды, раскален­ная лава и полярные сияния, некоторые све­тящиеся объекты среди животных и растений: глубоководная каракатица, радиолярия, светя­щиеся бактерии и т. п. Так, в теплую летнюю ночь в лесной траве можно увидеть яркие пят­нышки света - светлячков.

Не могут полностью удовлетворить все возрастающую потребность че­ловека в свете. И потому еще в древности люди начали создавать искусственные источники све­та. Сначала это были костер и лучина, позднее появились свечи, масляные и керосиновые лам­пы. В конце XIX века была изобретена электри­ческая лампа. Сегодня различные виды электри­ческих ламп используют повсюду (рис. 3.2-3.4).

В помещениях мы обычно используем лампы накаливания. К сожалению, они недо­статочно экономны: в таких лампах большая часть электрической энергии расходуется на нагревание самой лампы и окружающего воз­духа и только 3-4 % энергии превращается в световую. В последние годы, однако, появи­лись новые, в несколько раз более экономные конструкции электрических ламп.

Большие помещения (супермаркеты, цеха предприятий и т. п.) освещаются источниками света в виде длинных трубок - лампами днев­ного света. Для разноцветной иллюминации, которой ночью подсвечены некоторые дома, торговые центры и т. п., используют неоновые, криптоновые и другие лампы.


Рис. 3.2 Для освещения стадио­нов используют дуговые лампы


Рис. 3.3. Мощными источниками искусственного света являются галогенные лампы в фарах совре­менного автомобиля


Рис. 3.4.Сигналы современных светофоров хорошо видны даже тогда, когда солнце светит ярко. В таких светофорах лампы нака­ливания заменены светодиодами

4. Знакомимся с тепловыми и люминесцентными источниками света

В зависимости от температуры источников света их разделяют на тепловые и люминесцентные.

Солнце и звезды, раскаленная лава и лампа накаливания, пламя кост­ра, свечи, газовые горелки и т. п. - все это примеры тепловых источников света: они излучают свет благодаря тому, что имеют высокую собственную температуру (рис. 3.5).

Люминесцентные источники света отличаются от тепловых тем, что для их свечения не нужна высокая температура: световое излучение может быть довольно интенсивным, а источник при этом остается относительно хо­лодным.

Примерами люминесцентных источников является экран телевизора, монитор компьютера , лампы дневного света, указатели и дорожные знаки, покрытые люминесцентной краской, световые индикаторы, некоторые организмы, а также полярные сияния.

5. Узнаем о точечных и протяженных источниках света

В зависимости от соотношения размера источника света и расстояния от него до приемника света различают точечные и протяженные ис­точники света.


Источник света считается точечным, если его размер относительно невелик по сравнению с расстоянием от него до приемника света.

В противоположном случае источник счи­тается протяженным.

Таким образом, один и тот же источник света в зависимости от условий может счи­таться как протяженным, так и точечным.

Так, когда мы находимся в кухне, то лампа дневного света (трубка длиной 0,5-I м), кото­рая ее освещает, является для нас протяжен­ным источником света. Если же мы попробуем посмотреть на ту же лампу снаружи (напри­мер, из скверика напротив дома, с расстояния 100-150 м от источника света), то лампа будет представлять собой точечный источник.

Таким образом, к точечным источникам света можно отнести даже огромные звезды, которые по размеру намного больше, чем Солн­це, - в том случае, если наблюдать их с Зем­ли, с расстояния, которое в миллионы раз пре­вышает размеры этих звезд.

6. Характер изуем приемники света

Вы, наверное, уже догадались, что уст­ройства, с помощью которых можно обнару­жить световое излучение, называют прием­никами света (рис. 3.6).

Естественными приемниками света явля­ются глаза живых существ.

Получая с помощью этих приемников ин­формацию, организм определенным образом реагирует на изменения в окружающей среде.

Так, войдя из темноты в ярко освещенную ком­нату, мы, конечно, зажмурим глаза, а увидев ночью свет фар автомобиля поблизости, обяза­тельно остановимся возле дороги.

Аналогичную глазам функцию выполняют искусственные приемники света. Так, фото­электрическими приемниками света - фотодио­дами - оборудованы, например, турникеты для прохождения пассажиров в метро, на вокзалах и т. п. Искусственные фотохимические прием­ники - это фото- и кинопленка, фотобумага.

Предлагаем вам самим ответить на вопрос о пользе таких фотохимических приемников.

Рис. 1.6. Приемники света

  • Подводим итоги

Физические тела, атомы и молекулы которых излучают свет, называ­ют источниками света.

Источники света бывают: тепловые и люминесцентные; естественные и искусственные; точечные и протяженные. Например, полярное сияние - естественный, протяженный для наблюдателя на Земле, люминесцентный источник света.

Устройства, с помощью которых можно обнаружить световое излучение, называют приемниками света. Органы зрения живых существ - естествен­ные приемники света.

  • Контрольные вопросы

1. Какую роль играет свет в жизни человека?

2. Что называют источ­никами света? Приведите примеры источников света.

3. Является ли Луна источником света?

4. На рисунке изображены различные источ­ники света. Какие из них вы отнесли бы к люминесцентным? тепловым?

5. Приведите примеры естественных и искусственных источников света.

6. Какие искусственные источники света встречаются чаще всего? При­ведите примеры использования этих источников в повседневной жизни, в технике.

7. При каких условиях источник света считают точечным? протяженным?

8. Какие устройства называют приемниками света?


  • Упражнения

1. В каких из указанных случаев Солнце можно считать точечным источником света?

а) Наблюдение солнечного затмения;
б) измерение высоты солнца над землей;
в) наблюдение Солнца из космического корабля, летящего за преде­лами Солнечной системы;
г) определение времени с помощью солнечных часов.

2. В каждом из приведенных перечней определите лишнее слово или словосочетание. Объясните свой выбор.

а) Пламя свечи, Солнце, звезды, Земля, пламя костра;
б) экран включенного компьютера, молния, лампа накаливания, пламя свечи;
в) лампа дневного света, пламя газовой горелки, дорожные знаки, светлячки.

3. Одной из единиц длины, применяемых в астрономии, является свето­вой год. Один световой год равняется расстоянию, которое проходит свет в вакууме за один год. Сколько метров составляет световой год, если скорость света в вакууме приблизительно равна 300 000км/с?

4. За какое приблизительно время свет проходит расстояние от Солн­ца до Земли, равное 150 000 000 км? (Скорость света в вакууме приблизительно равна 300 000 км/с.)

  • Физика и техника в Украине

Выдающийся физик (1895- 1971) начинал свою научную деятельность в Крымском университете и в Одесском политехническом институте. Наиболее известное достижение академика И. Е. Тамма - теоретическое объяснение так называемого эффекта Черенкова. Эффект Черенкова - это слабое голубое свечение, издаваемое полупрозрачной средой при прохождении сквозь нее радиоактивного излучения. Теория Тамма лежит в основе работы детекторов быстрых заряженных частиц (черенковских счетчиков). За эти исследования И. Е. Тамм получил в 1958 году Нобелевскую премию по физике (совместно с И. М. Франко и П. О. Черенковым).


Физика. 7 класс: Учебник / Ф. Я. Божинова, Н. М. Кирюхин, Е. А. Кирюхина. - X.: Издательство «Ранок», 2007. - 192 с.: ил.

Содержание урока конспект урока и опорный каркас презентация урока интерактивные технологии акселеративные методы обучения Практика тесты, тестирование онлайн задачи и упражнения домашние задания практикумы и тренинги вопросы для дискуссий в классе Иллюстрации видео- и аудиоматериалы фотографии, картинки графики, таблицы, схемы комиксы, притчи, поговорки, кроссворды, анекдоты, приколы, цитаты Дополнения рефераты шпаргалки фишки для любознательных статьи (МАН) литература основная и дополнительная словарь терминов Совершенствование учебников и уроков исправление ошибок в учебнике замена устаревших знаний новыми Только для учителей календарные планы учебные программы методические рекомендации

Источники света - один из самых массовых товаров. Ежегодно производят и потребляют миллиарды ламп, значительную долю которых пока составляют лампы накаливания и галогенные лампы.

Стремительно растёт потребление современных ламп - компактных люминесцентных и светодиодных. Происходящие изменения в качестве дают надежду на то, что источники света станут важным инструментом дизайнера, архитектора, проектировщика.

Об освещённости и цветовой температуре света

Ряд параметров ламп определяет насколько они применимы в том или ином проекте.

Световой поток определяет количество света, которое дает лампа (измеряется в люменах). Установленная в люстре лампа накаливания мощностью 100 Вт имеет световой поток 1200 лм, 35-ватная «галогенка» - 600 лм, а натриевая лампа мощностью 100 Вт - 10 000 лм.

У разных типов ламп разная световая отдача , определяющая эффективность преобразования электрической энергии в свет и, следовательно, разную экономическую эффективность применения. Световую отдачу лампы измеряют в лм/Вт (светотехники говорят «люменов с ватта», имея в виду, что каждый ватт потребляемой электроэнергии «преобразуется» в некоторое количество люменов светового потока).

Переходя от количества к качеству, рассмотрим цветовую температуру (Т цв, единица измерения - градус Кельвина) и индекс цветопередачи (Ra). При выборе ламп дизайнер обязательно учитывает для той или иной установки. Комфортная среда сильно зависит от того, какой свет в помещении «тёплый» или «холодный» (чем выше цветовая температура, тем «холоднее» свет).

Цветопередача - важный параметр, о котором часто забывают. Чем более сплошной и равномерный спектр у лампы, тем различимее цвета предметов в её свете. У Солнца сплошной спектр излучения и наилучшая цветопередача, при этом Т цв меняется от 6000К в полдень до 1800К в рассветные и закатные часы. Но далеко не все лампы могут сравниться с Солнцем.

Если у искусственных источников теплового излучения сплошной спектр и нет проблем с цветопередачей, то разрядные лампы , имеющие в своем спектре полосы и линии, сильно искажают цвета предметов.

Индекс цветопередачи тепловых источников равен 100, для разрядных он колеблется от 20 до 98. Правда, индекс цветопередачи не даёт сделать вывод о характере передачи цветов, а иногда способен запутать дизайнера. Так, у люминесцентных ламп и у белых светодиодов хорошая цветопередача (Ra=80), но при этом они неудовлетворительно передают некоторые цвета.

Другой крайний случай, когда индекс цветопередачи более 90 - в этом случае некоторые цвета воспроизводятся неестественно насыщенными.

Лампы выходят из строя. Кроме того, световой поток лампы уменьшается в процессе работы. Срок службы - основной эксплуатационный параметр источников света.

Проектируя осветительную установку нельзя забывать об обслуживании, т. к. частая замена ламп увеличивает стоимость эксплуатации и вносит дискомфорт.

Лампы накаливания

Вольфрамовая спираль в колбе разогревается под действием электрического тока. Для сокращения скорости распыления вольфрама и соответственно увеличения срока службы лампы колба наполняется инертным газом. По принципу действия лампа накаливания относится к тепловым источникам света, т. е. значительная доля потребляемой энергии расходуется на тепловое и инфракрасное излучение.

Типичная для ламп накаливания световая отдача 10–15 лм/Вт, а срок службы редко превышает 2000 часов. Достоинства этих ламп: низкая цена и качество света (Т цв =2700, Ra=100). Сплошной спектр качественно воспроизводит цвета окружающих предметов. Лампы накаливания постепенно вытесняются разрядными источниками света и светодиодными лампами.

Галогенные лампы накаливания

Добавление галогенов в колбу лампы накаливания и использование кварцевого стекла позволили сделать серьезный шаг вперёд, получив новый класс источников света - галогенные лампы накаливания. Световая отдача современных ГЛН составляет 30 лм/Вт. Типичное значение цветовой температуры 3000К и индекс цветопередачи 100. «Точечная» форма источника света с помощью отражателей даёт управлять пучком света.

Получающийся при этом искристый свет определил приоритет таких ламп в интерьерном дизайне, где они заняли лидерство. Ещё одно преимущество в том, что количество и качество света лампы постоянно на протяжении срока службы. Популярны низковольтные «галогенки» мощностью 10–75 Вт с отражателем, который фокусирует луч в угле 10–40°.

Недостатки ГЛН очевидны: малая световая отдача, короткий срок службы (в среднем 2000–4000 часов), необходимость использования (для низковольтных) понижающих трансформаторов. Там, где эстетический компонент важнее экономического, с ними приходится мириться.

Люминесцентные лампы

Люминесцентные лампы (ЛЛ) - разрядные лампы низкого давления - представляют собой цилиндрическую трубку с электродами, которая наполнена инертным газом и малым количеством ртути. При включении в трубке возникает дуговой разряд, и атомы ртути начинают излучать видимый свет и ультрафиолет. Нанесённый на стенки трубки люминофор под действием ультрафиолетовых лучей излучает видимый свет.

Основа светового потока лампы - излучение люминофора, видимые линии ртути составляют лишь малую часть. Многообразие люминофоров (смесей люминофоров) позволяет получить источники света с различным спектральным составом, который определяет цветовую температуру и индекс цветопередачи.

Люминесцентные лампы дают мягкий, равномерный свет, но его распределением в пространстве трудно управлять из-за большой поверхности излучения. Для работы люминесцентных ламп необходима специальная пускорегулирующая аппаратура. Лампы долговечны - срок службы до 20 000 часов.

Световая отдача и срок службы сделали их самыми распространёнными источниками света в офисном освещении.

Компактные люминесцентные лампы

Развитие люминесцентных ламп привели к созданию компактных люминесцентных ламп (КЛЛ). Это источник света похожий на миниатюрную люминесцентную, иногда с встроенным электронным пускорегулирующим аппаратом и резьбовым цоколем Е27 (для непосредственной замены ламп накаливания), Е14 и др.

Различие заключается в уменьшенном диаметре трубки и использовании другого типа люминофора. Компактная люминесцентная лампа может с успехом заменить лампы накаливания.

Разрядные лампы высокого давления

Последние разработки позволяют использовать для освещения разрядные лампы высокого давления. По ряду показателей подходят металлогалогенные (МГЛ). У этих ламп во внешней колбе размещается горелка с излучающие добавки. В горелке присутствует некоторое количество ртути, галоген (чаще йод) и атомы химических элементов (Tl, In, Th, Na, Li и др.).

Сочетание излучающих добавок достигает интересных параметров: высокая световая отдача (до 100 лм/Вт), отличная цветопередача Rа=80–98, диапазон Тцв от 3000 К до 6000 К, средний срок службы до 15 000 часов. Для работы этих ламп требуется пускорегулирующие аппараты и специальные светильники. Рекомендуется использовать эти источники для освещения помещений с большой площадью, с высокими потолками, просторных залов.

Светодиодные лампы

Светодиоды - полупроводниковые светоизлучающие приборы, называют источниками света будущего. Если говорить о современном состоянии «твердотельной светотехники», можно утверждать, что она вышла из периода младенчества. Достигнутые характеристики светодиодов (световая отдача до 140 лм/Вт, Rа=80–95, срок службы 70 000 часов) уже обеспечили лидерство во многих областях.

Диапазон мощностей светодиодных источников, реализация в лампах разных типов цоколей, управление лампами позволили в короткий срок удовлетворить растущие требования к источникам света. Главными преимуществами светодиодов остаются компактные размеры и управления цветовыми параметрами (цветодинамика).

Свет (с латинского языка lucis) или видимый свет представляет собой часть спектра электромагнитного излучения, которое воспринимается человеческим глазом. Элементарной единицей света является фотон. Элементарные частицы обладают определенной длинной волны, зависящей от источника света, который их породил. Фотон подчиняется законам квантовой механики и в разных физических условиях может проявлять себя либо как частица, либо как волна.

Историческая эволюция приборов для освещения

Первые источники видимого электромагнитного излучения, которые использовало человечество для своих нужд, были основаны на сжигании горючего топлива растительного (дерево) или животного происхождения (сало и жир).

Древние греки и римляне впервые стали использовать глиняные и бронзовые сосуды, в которые помещали горючие вещества. Эти сосуды стали прародителями современных ламп.

В конце XVIII века швейцарский химик Аргант изобрел лампу с фитилем, в которой в качестве топлива использовался керосин. В конце XIX века Эдисон запатентовал электрическую лампу накаливания. После этого изобретения и благодаря быстрой динамике развития индустрии, начинает появляться множество других электрических источников излучения.

Физика источников света

Спектр излучения, который видит глаз человека, лежит в приделах длин волн фотонов от 400 нм до 700 нм. Источником света является физический процесс, который происходит в атоме вещества. Атом в результате какого-либо действия может получить энергию извне, часть этой энергии он передает своей электронной подсистеме.

Энергетические уровни электрона в атоме являются дискретными, то есть каждому из этих уровней соответствует конкретная величина. Благодаря полученной извне энергии некоторые электроны атома могут перейти на энергетические уровни более высокого порядка, в этом случае можно говорить о возбужденном электронном состоянии. В этом состоянии электроны оказываются неустойчивыми и снова переходят на уровни с меньшей энергией. Этот процесс сопровождается излучением фотонов, которое и является светом, который мы воспринимаем.

Термическое излучение

Процесс термического излучения представляет собой физический процесс, при котором электронная подсистема возбуждается за счет передачи ей кинетической энергии от ядер атомов. Если какой-либо объект, например металлическую пластину, подвергнуть нагреву до высоких температур, то он начнет светиться. Сначала видимый свет будет иметь красный цвет, поскольку эта часть видимого спектра является наименее энергетической. При увеличении температуры металла он станет излучать бело-желтый свет.

Отметим, что при нагреве металла он сначала начинает испускать инфракрасные лучи, которые человек не способен видеть, но ощущает их в виде тепла.

Люминесцентное излучение


Этот тип излучения возникает без предварительного нагрева тела и состоит из двух последовательных физических процессов:

  1. Поглощение электронной подсистемой энергии и переход этой подсистемы в возбужденное энергетическое состояние.
  2. Излучение в световом диапазоне, связанное с возвращением электронной подсистемы в основное энергетическое состояние.

Если оба этапа происходят во временном интервале в несколько секунд, то процесс называется флуоресценцией, например, излучение экрана телевизора после его выключения является флуоресцентным. Если же оба этапа процесса излучения происходят в течение несколько часов и дольше, то такое излучение называется фосфоресценцией, например, светящиеся часы в темной комнате.

Классификация световых источников


Все источники видимого для человеческого глаза электромагнитного излучения в зависимости от его происхождения можно разделить на две большие группы:

  1. Естественные источники. Они излучают электромагнитные волны благодаря естественным физическим и химическим процессам, например естественными источниками света являются звезды, светлячки и другие. Они могут быть объектами как живой, так и неживой природы.
  2. Искусственные источники света. Они обязаны своим происхождением человеку, так как являются его изобретением.

Искусственные приборы видимого электромагнитного излучения


В свою очередь, искусственные источники бывают следующих типов:

  • Лампы накаливания. Они излучают свет благодаря разогреву металлической нити накаливания до температуры нескольких тысяч градусов. Сама нить накаливания находится в герметичном стеклянном сосуде, который заполнен инертным газом, предотвращающим процесс окисления нити.
  • Галогеновые лампы. Представляют собой новую эволюционную ступень ламп накаливания, в которых к инертному газу, в котором находится металлическая нить накаливания, добавляется галогеновый газ, например, йод или бром. Этот газ вступает в химическое равновесие с металлом нити, которым является вольфрам, и позволяет продлить срок службы лампы. Вместо стеклянного корпуса в галогеновых лампах используют кварц, который выдерживает более высокие температуры, чем стекло.
  • Газоразрядные лампы. Этот вид источников света создает видимое электромагнитное излучение за счет электрических разрядов, которые возникают в смеси газов и паров металла.
  • Флуоресцентные лампы. Эти электрические источники света создают излучение за счет флуоресцентного покрытия внутренней стороны корпуса лампы, которое возбуждается за счет ультрафиолетового излучения электрического разряда.
  • Источники LED (от англ. Light Emitting Diode). Этот вид источников света представляет собой диодные источники электромагнитного излучения. Они отличаются простотой устройства и долгим сроком действия. Также их преимуществами перед другими электрическими источниками света является низкая потребляемая мощность и практически полное отсутствие теплового излучения.

Прямое и непрямое излучение

Прямыми источниками света являются приборы, природные тела и организмы, которые могут самостоятельно испускать электромагнитные волны в видимом спектре. К прямым источникам относятся звезды, температура которых достигает десятков и сотен тысяч градусов, огонь, лампа накаливания, а также современные приборы, например, плазменный телевизор или жидкокристаллический монитор компьютера, который производит излучение, индуцированное микро электрическим разрядом.

Другим примером прямых естественных источников света являются животные, которые обладают биолюминесценцией. Излучение в этом случае возникает как результат химических процессов, происходящих в организме существ. К ним относятся светлячки и некоторые жители морских глубин.

Непрямые источники света представляют собой тела, которые не излучают самостоятельно свет, но способны его отражать. При этом отражающая способность каждого тела зависит от его химического состава и физического состояния. Непрямые источники святятся только благодаря тому, что находятся под влиянием электромагнитного излучения прямых источников. Если непрямой источник не аккумулирует световую энергию, то при прекращении воздействия света на него он перестает быть видимым.

Примеры непрямого излучения

Традиционным примером источников света данного типа является спутник Земли - Луна. Это небесное тело отражается солнечные лучи, которые падают на нее. Благодаря процессу отражения мы можем видеть, как саму Луну, так и окружающие нас предметы ночью в лунном свете. По той же причине видны в телескоп планеты солнечной системы, а также наша планета - Земля (если смотреть на нее из космоса).

Еще одним примером объекта непрямого излучения, который отражает лучи от источника света, является сам человек. В общем, любой предмет является источником непрямого излучения за исключением черной дыры. Гравитационное поле черных дыр настолько сильно, что даже свет не может выбраться из него.

Основные характеристики приборов

Основными характеристиками источников света являются следующие:

  • Световой поток. Физическая величина, которая характеризует количество света, испускаемого источником за одну секунду во всех направлениях. Единицей измерения светового потока является люмен.
  • Интенсивность излучения. В некоторых случаях возникает необходимость в знании распределения светового потока вокруг его источника. Именно это распределение и описывает данная характеристика, которая измеряется в канделах.
  • Освещенность. Измеряется в люксах и представляет собой отношение светового потока к освещаемой им площади. Эта характеристика важна для комфортного выполнения определенных видов работ. Например, по международным нормам освещенность на кухне должна быть около 200 люкс, а для учебы уже необходимы 500 люкс.
  • Эффективность излучения. Является важной характеристикой любой электрической лампы, поскольку она описывает отношение светового потока, создаваемого данным прибором, к потребляемой им мощности. Чем больше это отношение, тем более экономичной считается лампа.
  • Индекс цветопередачи. Указывает на то, насколько точно лампа воспроизводит цвета. Для ламп хорошего качества этот индекс лежит в области 100.
  • Цветовая температура. Представляет собой меру "белизны" света. Так, свет с преобладающими красно-желтыми цветами считается теплым и имеет цветовую температуру меньше 3000 К, холодный свет имеет синие цвета и характеризуется цветовой температурой выше 6000 К.

Применение искусственных источников видимого излучения

Каждый искусственный источник электромагнитного излучения определенного типа используется человеком в той или иной сфере деятельности. Области применения источников света следующие:

  • Лампы накаливания продолжают оставаться основными источниками освещения помещений благодаря их низкой цене и хорошему индексу цветопередачи. Однако эти лампы постепенно вытесняются галогеновыми.
  • Галогеновые лампы задумывались как электроприборы, которые должны были повысить эффективность ламп накаливания, заменив их. В настоящее время они нашли свое применение в автомобилях.
  • Флуоресцентные источники света применяются главным образом для освещения офисов и других служебных помещений благодаря своему разнообразию форм и излучению рассеянного и равномерного света. Эффективность излучения такого типа ламп повышается с увеличением их длины и диаметра.

Важность естественного света для здоровья человека

Для всех организмов, которые обитают на планете Земля, вращение нашей планеты и периодичность дня и ночи являются важными процессами для нормальной жизнедеятельности и протекания биологического цикла. Более того, чтобы быть здоровыми, большинство живых существ нуждаются в прямом солнечном излучении.


Если говорить о человеке, то недостаток солнечного света приводит к развитию депрессии, а также к недостатку витамина D, поскольку полученный человеком загар позволяет организму усваивать этот витамин с большей легкостью.

Результаты одного исследования продемонстрировали, что достаточное нахождение человека под прямыми солнечными лучами позволяет снизить и облегчить некоторые симптомы определенных заболеваний. В частности, связанные с депрессией проблемы полностью или частично исчезали у 20% пациентов. Естественно, что один лишь солнечный свет не является лекарством против депрессии, однако он является неотъемлемой частью комплексного лечения.

Искусственные источники света — технические устройства различной конструкции, преобразовывающие энергию в световое излучение. В источниках света используется в основном электроэнергия, но так же иногда применяется химическая энергия и другие способы генерации света (например, триболюминесценция, радиолюминесценция, биолюминесценция и др.).

Источники света, наиболее часто применяемые для искусственного освещения, делят на три группы - газоразрядные лампы, лампы накаливания и светодиоды. Лампы накаливания относятся к источникам света теплового излучения. Видимое излучение в них получается в результате нагрева электрическим током вольфрамовой нити. В газоразрядных лампах излучение оптического диапазона спектра возникает в результате электрического разряда в атмосфере инертных газов и паров металлов, а также за счет явлений люминесценции, которое невидимое ультрафиолетовое излучение преобразует в видимый свет.

В системах производственного освещения предпочтение отдается газоразрядным лампам. Использование ламп накаливания допускается в случае невозможности или экономической нецелесообразности применения газоразрядных.

Основные характеристики источников света:

· номинальное напряжение питающей сети U, B;

· электрическая мощность W, Вт;

· световой поток Ф, лм;

· световая отдача (отношение светового потока лампы к ее мощности) лм/Вт;

· срок службы t, ч;

· Цветовая температура Tc, К.

Лампа накаливания - источник света, в котором преобразование электрической энергии в световую происходит в результате накаливания электрическим током тугоплавкого проводника (вольфрамовой нити). Эти приборы предназначаются для бытового, местного и специального освещения. Последние, как правило, отличаются внешним видом - цветом и формой колбы. Коэффициент полезного действия (КПД) ламп накаливания составляет около 5-10%, такая доля потребляемой электроэнергии преобразуется в видимый свет, а основная ее часть превращается в тепло. Любые лампы накаливания состоят из одинаковых основных элементов. Но их размеры, форма и размещение могут сильно отличаться, поэтому различные конструкции не похожи друг на друга и имеют разные характеристики.

Существуют лампы, колбы которых наполнены криптоном или аргоном. Криптоновые обычно имеют форму "грибка". Они меньше по размеру, но обеспечивают больший (примерно на 10%) световой поток по сравнению с аргоновыми. Лампы с шаровой колбой предназначены для светильников, служащих декоративными элементами; с колбой в форме трубки - для подсветки зеркал в стенных шкафах, ванных комнатах и т. д. Лампы накаливания имеют световую отдачу от 7 до 17 лм/Вт и срок службы около 1000 часов. Они относятся к источникам света с теплой тональностью, поэтому создают погрешности при передаче сине-голубых, желтых и красных тонов. В интерьере, где требования к цветопередаче достаточно высоки, лучше использовать другие типы ламп. Также не рекомендуется применять лампы накаливания для освещения больших площадей и для создания освещенности, превышающей уровень 1000 Лк, так как при этом выделяется много тепла и помещение "перегревается".

Несмотря на эти ограничения, такие приборы все еще остаются классическим и излюбленным источникам света.

Лампы накаливания со временем теряют яркость, и происходит это по простой причине: испаряющийся с нити накаливания вольфрам осаждается в виде темного налета на внутренних стенках колбы. Современные галогенные лампы не имеют этого недостатка благодаря добавлению в газ-наполнитель галогенных элементов (йода или брома).

Лампы бывают двух форм: трубчатые - c длинной спиралью, расположенной по оси кварцевой трубки, и капсульные - с компактным телом накала.

Цоколи малогабаритных бытовых галогенных ламп могут быть резьбовыми (тип Е), которые подходят к обычным патронам, и штифтовые (тип G), которые требуют патронов другого типа.

Световая отдача галогенных ламп составляет 14-30 лм/Вт. Они относятся к источникам с теплой тональностью, но спектр их излучения ближе к спектру белого света, чем у ламп накаливания. Благодаря этому прекрасно "передаются" цвета мебели и интерьера в теплой и нейтральной гамме, а также цвет лица человека.

Применяются повсюду. Лампы, имеющие цилиндрическую или свечеобразную колбу и рассчитанные на сетевое напряжение 220В, можно использовать вместо обычных ламп накаливания. Зеркальные лампы, рассчитанные на низкое напряжение, практически незаменимы при акцентированном освещении картин, а также жилых помещений.

— разрядные лампы низкого давления — представляют собой цилиндрическую трубку с электродами, в которую закачаны пары ртути. Эти лампы значительно меньше расходуют электроэнергию, чем лампы накаливания или даже галогенные лампы, а служат намного дольше (срок службы до 20 000 часов). Благодаря экономичности и долговечности эти лампы стали самыми распространенными источниками света. В странах с мягким климатом люминесцентные лампы широко применяются в наружном освещении городов. В холодных районах их распространению мешает падение светового потока при низких температурах. Принцип их действия основан на свечении люминофора, нанесенного на стенки колбы. Электрическое поле между электродами лампы заставляет пары ртути выделять невидимое ультрафиолетовое излучение, а люминофор преобразует это излучение в видимый свет. Подбирая сорт люминофора, можно изменять цветовую окраску испускаемого света.

Принцип действия разрядных ламп высокого давления — свечение наполнителя в разрядной трубке под действием дуговых электрических разрядов.

Два основных разряда высокого давления, применяемых в лампах — ртутный и натриевый. Оба дают достаточно узкополосное излучение: ртутный — в голубой области спектра, натрий — в желтой, поэтому цветопередача ртутных (Ra=40-60) и особенно натриевых ламп (Ra=20-40) оставляет желать лучшего. Добавление внутрь разрядной трубки ртутной лампы галогенидов различных металлов позволило создать новый класс источников света — , отличающиеся очень широким спектром излучения и прекрасными параметрами: высокая световая отдача (до 100 Лм/Вт), хорошая и отличная цветопередача Ra=80-98, широкий диапазон цветовых температур от 3000 К до 20000К, средний срок службы около 15 000 часов. МГЛ успешно применяются в архитектурном, ландшафтном, техническом и спортивном освещении. Еще более широко применяются . На сегодняшний день это один самых экономичных источников света благодаря высокой светоотдаче (до 150 Лм/Вт), большому сроку службы и демократичной цене. Огромное количество натриевых ламп используется для освещения автомобильных дорог. В Москве натриевые лампы часто из экономии используются для освещения пешеходных пространств, что не всегда уместно из-за проблем с цветопередачей.

Светодиод — это полупроводниковый прибор, преобразующий электрический ток в световое излучение. Специально выращенные кристаллы дают минимальное потребление электроэнергии. Великолепные характеристики светодиодов (световая отдача до 120 Лм/Вт, цветопередача Ra=80-85, срок службы до 100 000 часов) уже обеспечили лидерство в светосигнальной аппаратуре, автомобильной и авиационной технике.

Светодиоды применяются в качестве индикаторов (индикатор включения на панели прибора, буквенно-цифровое табло). В больших уличных экранах и в бегущих строках применяется массив (кластер) светодиодов. Мощные светодиоды используются как источник света в фонарях и прожекторах. Так же они применяются в качестве подсветки жидкокристаллических экранов. Последние поколения этих источников света можно встретить в архитектурном и интерьерном освещении, а так же в бытовом и коммерческом.

Преимущества:

· Высокий КПД.

· Высокая механическая прочность, вибростойкость (отсутствие спирали и иных чувствительных составляющих).

· Длительный срок службы.

· Специфический спектральный состав излучения. Спектр довольно узкий. Для нужд индикации и передачи данных это — достоинство, но для освещения это недостаток. Более узкий спектр имеет только лазер.

· Малый угол излучения — также может быть как достоинством, так и недостатком.

· Безопасность — не требуются высокие напряжения.

· Нечувствительность к низким и очень низким температурам. Однако, высокие температуры противопоказаны светодиоду, как и любым полупроводникам.

· Отсутствие ядовитых составляющих (ртуть и др.) и, следовательно, лёгкость утилизации.

· Недостаток - высокая цена.

· Срок службы: среднее время полной выработки для светодиодов составляет 100000 часов, это в 100 раз больше ресурса лампочки накаливания.