Магнитное поле прямолинейного проводника с током. Магнитное поле вокруг проводника с током

Электрический ток в проводнике образует магнитное поле вокруг проводника. Электрический ток и магнитное поле - это две неотделимые друг от друга части единого физического процесса. Магнитное поле постоянных магнитов в конечном счете также порождается молекулярными электрическими токами, образованными движением электронов по орбитам и вращением их вокруг своих осей.

Магнитное поле проводника и направление его силовых линий можно определить при помощи магнитной стрелки. Магнитные линии прямолинейного проводника имеют форму концентрических окружностей, расположенных в плоскости, перпендикулярной проводнику. Направление магнитных силовых линий зависит от направления тока в проводнике. Если ток в проводнике идет от наблюдателя, то силовые линии направлены по часовой стрелке.

Зависимость направления поля от направления тока определяется правилом буравчика: при совпадении поступательного движения буравчика с направлением тока в проводнике направление вращения ручки совпадает с направлением магнитных линий.

Правилом буравчика можно пользоваться и для определения направления магнитного поля в катушке, но в следующей формулировке: если направление вращения рукоятки буравчика совместить с направлением тока в витках катушки, то поступательное движение буравчика покажет направление силовых линий поля внутри катушки (рис. 4.4).

Внутри катушки эти линии идут от южного полюса к северному, а вне ее - от северного к южному.

Правилом буравчика можно пользоваться также и при определении направления тока, если известно направление силовых линий магнитного поля.

На проводник с током, находящийся в магнитном поле, действует сила, равная

F = I·L·B·sin

I - сила тока в проводнике; B - модуль вектора индукции магнитного поля; L - длина проводника, находящегося в магнитном поле;  - угол между вектором магнитного поля инаправлением тока впроводнике.

Силу, действующую на проводник с током в магнитном поле, называют силой Ампера.

Максимальная сила Ампера равна:

F = I·L·B

Направление силы Ампера определяется по правилу левой руки: если левую руку расположить так, чтобы перпендикулярная составляющая вектора магнитной индукции В входила в ладонь, а четыре вытянутых пальца были направлены по направлению тока, то отогнутый на 90 градусов большой палец покажет направление силы, действующей на отрезок проводника с током, то есть силы Ампера.

Если и лежат в одной плоскости, то угол между и прямой, следовательно . Тогда сила, действующая на элемент тока ,

(разумеется, со стороны первого проводника на второй действует точно такая же сила).

Результирующая сила равна одной из этих сил. Если эти два проводника будут воздействовать на третий, тогда их магнитные поля и нужно сложить векторно.

Контур с током в магнитном поле

Рис. 4.13

Пусть в однородное магнитное поле помещена рамка с током (рис. 4.13). Тогда силы Ампера, действующие на боковые стороны рамки, будут создавать вращающий момент, величина которого пропорциональна магнитной индукции, силе тока в рамке, ее площади S и зависит от угла a между вектором и нормалью к площади :

Направление нормали выбирают так, чтобы в направлении нормали перемещался правый винт при вращении по направлению тока в рамке.

Максимальное значение вращательный момент имеет тогда, когда рамка устанавливается перпендикулярно магнитным силовым линиям:

Это выражение также можно использовать для определения индукции магнитного поля:

Величину, равную произведению , называют магнитным моментом контура Р т . Магнитный момент есть вектор, направление которого совпадает с направлением нормали к контуру. Тогда вращательный момент можно записать

При угле a = 0 вращательный момент равен нулю. Значение вращательного момента зависит от площади контура, но не зависит от его формы. Поэтому на любой замкнутый контур, по которому течет постоянный ток, действует вращательный момент М , который поворачивает его так, чтобы вектор магнитного момента установился параллельно вектору индукции магнитного поля.

Всем доброго времени суток. В прошлой статье я рассказал о магнитном поле и немного остановился на его параметрах. Данная статья продолжает тему магнитного поля и посвящена такому параметру как магнитная индукция. Для упрощения темы я буду рассказывать о магнитном поле в вакууме, так как различные вещества имеют разные магнитные свойства, и как следствие необходимо учитывать их свойства.

Закон Био – Савара – Лапласа

В результате исследования магнитных полей создаваемых электрическим током, исследователи пришли к таким выводам:

  • магнитная индукция, создаваемая электрическим током пропорциональна силе тока;
  • магнитная индукция имеет зависимость от формы и размеров проводника, по которому протекает электрический ток;
  • магнитная индукция в любой точке магнитного поля зависит от расположения данной точки по отношению к проводнику с током.

Французские учёные Био и Савар, которые пришли к таким выводам обратились к великому математику П. Лапласу для обобщения и вывода основного закона магнитной индукции. Он высказал гипотезу, что индукция в любой точке магнитного поля, создаваемое проводником с током можно представить в виде суммы магнитных индукций элементарных магнитных полей, которые создаются элементарным участком проводника с током. Данная гипотеза и стала законом магнитной индукции, называемого законом Био – Савара – Лапласа . Для рассмотрения данного закона изобразим проводник с током и создаваемую им магнитную индукцию

Магнитная индукция dB, создаваемая элементарным участком проводника dl.

Тогда магнитная индукция dB элементарного магнитного поля, которое создается участком проводника dl , с током I в произвольной точке Р будет определяться следующим выражением

где I – сила тока, протекающая по проводнику,

r – радиус-вектор, проведённый от элемента проводника к точке магнитного поля,

dl – минимальный элемент проводника, который создает индукцию dB,

k – коэффициент пропорциональности, зависящий от системы отсчёта, в СИ k = μ 0 /(4π)

Так как является векторным произведением, тогда итоговое выражение для элементарной магнитной индукции будет выглядеть следующим образом

Таким образом, данное выражение позволяет найти магнитную индукцию магнитного поля, которое создается проводником с током произвольной формы и размеров при помощи интегрирования правой части выражения

где символ l обозначает, что интегрирование происходит по всей длине проводника.

Магнитная индукция прямолинейного проводника

Как известно простейшее магнитное поле создает прямолинейный проводник, по которому протекает электрический ток. Как я уже говорил в предыдущей статье, силовые линии данного магнитного поля представляют собой концентрические окружности расположенные вокруг проводника.

Для определения магнитной индукции В прямого провода в точке Р введем некоторые обозначения. Так как точка Р находится на расстоянии b от провода, то расстояние от любой точки провода до точки Р определяется как r = b/sinα. Тогда наименьшую длину проводника dl можно вычислить из следующего выражения

В итоге закон Био – Савара – Лапласа для прямолинейного провода бесконечной длины будет иметь вид

где I – ток, протекающий по проводу,

b – расстояние от центра провода до точки, в которой рассчитывается магнитная индукция.

Теперь просто проинтегрируем получившееся выражение по в пределах от 0 до π.

Таким образом, итоговое выражение для магнитной индукции прямолинейного провода бесконечной длины будет иметь вид

I – ток, протекающий по проводу,

b – расстояние от центра проводника до точки, в которой измеряется индукция.

Магнитная индукция кольца

Индукция прямого провода имеет небольшое значение и уменьшается при удалении от проводника, поэтому в практических устройствах практически не применяется. Наиболее широко используются магнитные поля созданные проводом, намотанным на какой либо каркас. Поэтому такие поля называются магнитными полями кругового тока. Простейшим таким магнитным поле обладает электрический ток, протекающий по проводнику, который имеет форму окружности радиуса R.

В данном случае практический интерес представляет два случая: магнитное поле в центре окружности и магнитное поле в точке Р, которое лежит на оси окружности. Рассмотрим первый случай.

В данном случае каждый элемент тока dl создаёт в центре окружности элементарную магнитную индукцию dB, которая перпендикулярна к плоскости контура, тогда закон Био-Савара-Лапласа будет иметь вид

Остается только проинтегрировать полученное выражение по всей длине окружности

где μ 0 – магнитная постоянная, μ 0 = 4π 10 -7 Гн/м,

I – сила тока в проводнике,

R – радиус окружности, в которое свернут проводник.

Рассмотрим второй случай, когда точка, в которой вычисляется магнитная индукция, лежит на прямой х , которая перпендикулярна плоскости ограниченной круговым током.

В данном случае индукция в точке Р будет представлять собой сумму элементарных индукций dB X , которые в свою очередь представляет собой проекцию на ось х элементарной индукции dB

Применив закон Био-Савара-Лапласа вычислим величину магнитной индукции

Теперь проинтегрируем данное выражение по всей длине окружности

где μ 0 – магнитная постоянная, μ 0 = 4π 10 -7 Гн/м,

I – сила тока в проводнике,

R – радиус окружности, в которое свернут проводник,

х – расстояние от точки, в которой вычисляется магнитная индукция, до центра окружности.

Как видно из формулы при х = 0, получившееся выражение переходит в формулу для магнитной индукции в центре кругового тока.

Циркуляция вектора магнитной индукции

Для расчёта магнитной индукции простых магнитных полей достаточно закона Био-Савара-Лапласа. Однако при более сложных магнитных полях, например, магнитное поле соленоида или тороида, количество расчётов и громоздкость формул значительно увеличится. Для упрощения расчётов вводится понятие циркуляции вектора магнитной индукции.

Представим некоторый контур l , который перпендикулярный току I . В любой точке Р данного контура, магнитная индукция В направлена по касательной к данному контуру. Тогда произведение векторов dl и В описывается следующим выражением

Так как угол достаточно мал, то векторов dl В определяется, как длина дуги

Таким образом, зная магнитную индукцию прямолинейного проводника в данной точке, можно вывести выражение для циркуляции вектора магнитной индукции

Теперь остаётся проинтегрировать получившееся выражение по всей длине контура

В нашем случае вектор магнитной индукции циркулирует вокруг одного тока, в случае же нескольких токов выражение циркуляции магнитной индукции переходит в закон полного тока, который гласит:

Циркуляция вектора магнитной индукции по замкнутому контуру пропорциональна алгебраической сумме токов, которые охватывает данный контур.

Магнитное поле соленоида и тороида

С помощью закона полного тока и циркуляции вектора магнитной индукции достаточно легко определить магнитную индукцию таких сложных магнитных полей как у соленоида и тороида.

Соленоидом называется цилиндрическая катушка, которая состоит из множества витков проводника, намотанных виток к витку на цилиндрический каркас. Магнитное поле соленоида фактически состоит из множества магнитных полей кругового тока с общей осью, перпендикулярной к плоскости каждого кругового тока.

Воспользуемся циркуляцией вектора магнитной индукции и представим циркуляцию по прямоугольному контуру 1-2-3-4 . Тогда циркуляция вектора магнитной индукции для данного контура будет иметь вид

Так как на участках 2-3 и 4-1 вектор магнитной индукции перпендикулярен к контуру, то циркуляция равна нулю. На участке 3-4 , который значительно удалён от соленоида, то его так же можно не учитывать. Тогда с учётом закона полного тока магнитная индукция в соленоиде достаточно большой длины будет иметь вид

где n – число витков проводника соленоида, которое приходится на единицу длины,

I – ток, протекающий по соленоиду.

Тороид образуется путём намотки проводника на кольцевой каркас. Данная конструкция эквивалентна системе из множества одинаковых круговых токов, центры которых расположены на окружности.

В качестве примера рассмотрим тороид радиуса R , на который намотано N витков провода. Вокруг каждого витка провода возьмём контур радиуса r , центр данного контура совпадает в центром тороида. Так как вектор магнитной индукции B направлен по касательной к контуру в каждой точке контура, то циркуляция вектора магнитной индукции будет иметь вид

где r – радиус контура магнитной индукции.

Контур проходя внутри тороида охватывает N витков провода с током I, тогда закон полного тока для тороида будет иметь вид

где n – число витков проводника, которое приходится на единицу длины,

r – радиус контура магнитной индукции,

R – радиус тороида.

Таким образом, используя закон полного тока и циркуляцию вектора магнитной индукции можно рассчитать сколь угодно сложное магнитное поле. Однако закон полного тока дает правильные результаты только лишь в вакууме. В случае расчёта магнитной индукции в веществе необходимо учитывать так называемые молекулярные токи. Об этом пойдёт речь в следующей статье.

Теория это хорошо, но без практического применения это просто слова.

Вычислим индукцию магнитного поля, создаваемого прямолинейным проводником с током в произвольной точке М . Мысленно разобьем проводник на элементарно малые участки длиною . Согласно правилу буравчика в точке М векторы от всех элементов тока имеют одинаковое направление - за плоскость рисунка. Поэтому сложение векторов можно заменить сложением их модулей , причем

. (3)

Для интегрирования нужно переменные , , и выразить через одну какую-либо из них. В качестве переменной интегрирования выберем угол . ВС - есть дуга окружности радиуса r с центром в точке , равная (см. рисунок). Выразим из прямоугольного треугольника АВС : . Подставив это выражение в (3) получим . Из треугольника АОМ определим , где - кратчайшее расстояние от точки поля до линии тока. Тогда

.

Интегрируя последнее выражение по всем элементам тока, что эквивалентно интегрированию от до , находим .

Таким образом, индукция магнитного поля, созданного прямолинейным током конечной длины будет равна

.

В дальнейшем, я введу понятие вектора напряженности магнитного поля , которое связано с индукцией магнитного поля соотношением , , где - магнитная проницаемость среды. Для вакуума , для воздуха . Тогда напряженность магнитного поля, созданного проводником конечной длины будет равна

.

Для прямолинейного проводника бесконечной длины углы и будут равны , , а выражение в скобках принимает значение . Следовательно, индукция и напряженность магнитного поля, созданного прямолинейным проводником с током бесконечной длины равны соответственно

Магнитное поле кругового тока

В качестве второго применения закона Био - Савара - Лапласа вычислим индукцию и напряженность магнитного поля на оси кругового тока. Обозначим радиус окружности проводника с током через , расстояние от центра кругового тока до исследуемой точки поля через h . От всех элементов тока образуется конус векторов , и легко сообразить, что результирующий вектор в точке будет направлен горизонтально вдоль оси . Для нахождения модуля вектора достаточно сложить проекции векторов на ось . Каждая такая проекция имеет вид



,

где учтено, что угол - между векторами и равен , поэтому синус равен единице. Проинтегрируем это выражение по всем

.

Интеграл - есть длина окружности проводника с током, тогда

.

Учитывая, что , запишем

и, применяя теорему Пифагора, получим,

,

а для напряженности магнитного поля

.

Магнитная индукция и напряженность магнитного поля в центре кругового тока, ( , ) , соответственно равны

Взаимодействие параллельных проводников с током.

Единица силы тока.

Найдем силу на единицу длины, с которой взаимодействуют в вакууме два параллельных бесконечно длинных провода с токами и , если расстояние между проводами равно . Каждый элемент тока находится в магнитном поле тока , а именно в поле . Угол между каждым элементом тока и вектором поля равен 90°.

Тогда согласно закону Ампера, на участок проводника с током действует сила

,

а на единицу длины проводника эта сила будет равна

Для силы действующей на единицу длины проводника с током , получается, то же выражение. И наконец. Определяя направление вектора при помощи правила правого винта, и направление силы Ампера при помощи правила левой руки убедимся, что токи одинаково направленные, притягиваются, а противоположно направленные отталкиваются.

Если по проводникам, находящимся на расстоянии протекают одинаковые токи , то на каждый метр длины проводников действуют силы равные по или, учитывая что , получим, а густота линий была бы пропорциональна модулю вектора, или в другой записи .

Это означает, что магнитное поле не имеет источников (магнитных зарядов). Магнитное поле порождают не магнитные заряды (которых в природе нет), а электрические токи. Этот закон является фундаментальным: он справедлив не только для постоянных, но и для переменных магнитных полей.

Электрический ток, протекающий по проводнику, создает вокруг этого проводника магнитное поле (рис. 7.1). Направление возникающего магнитного поля определяется направлением тока.
Способ обозначения направления электрического тока в проводнике показан на рис. 7.2: точку на рис. 7.2(а) можно воспринимать как острие стрелки, указывающей направление тока к наблюдателю, а крестик – как хвост стрелки, указывающей направление тока от наблюдателя.
Магнитное поле, возникающее вокруг проводника с током, показано на рис. 7.3. Направление этого поля легко определяется с помощью правила правого винта (или правила буравчика): если острие буравчика совместить с направлением тока, то при его завинчивании направление вращения рукоятки будет совпадать с направлением магнитного поля.

Рис. 7.1. Магнитное поле вокруг проводника с током.


Рис. 7.2. Обозначение направления тока (а) к наблюдателю и (б) от на-блюдателя.


Поле, создаваемое двумя параллельными проводниками

1. Направления токов в проводниках совпадают. На рис. 7.4(а) изображены два параллельных проводника, расположенные на некотором расстоянии друг от друга, причем магнитное поле каждого проводника изображено отдельно. В промежутке между проводниками создаваемые ими магнитные поля противоположны по направлению и компенсируют друг друга. Результирующее магнитное поле показано на рис. 7.4(б). Если из-менить направление обоих токов на обратное, то изменится на обратное и направление результирующего магнитного поля (рис. 7.4(б)).


Рис. 7.4. Два проводника с одинаковыми направлениями токов (а) и их результирующее магнитное поле (6, в).

2. Направления токов в проводниках противоположны. На рис. 7.5(а) показаны магнитные поля для каждого проводника по отдельности. В этом случае в промежутке между проводниками их поля суммируются и здесь результирующее поле (рис. 7.5(б)) максимально.


Рис. 7.5. Два проводника с противоположными направлениями токов (а) и их результирующее магнитное поле (б).


Рис. 7.6. Магнитное поле соленоида.

Соленоид – это цилиндрическая катушка, состоящая из большого числа витков проволоки (рис. 7.6). Когда по виткам соленоида протекает ток, соленоид ведет себя как полосовой магнит с северным и южным полюсами. Создаваемое им магнитное поло ничем не отличается от ноля постоянного магнита. Магнитное поле внутри соленоида можно усилить, намотав катушку на магнитный сердечник из стали, железа или друго¬го магнитного материала. Напряженность (величина) магнитного поля соленоида зависит также от силы пропускаемого электрического тока и числа витков.

Электромагнит

Соленоид можно использовать в качестве электромагнита, при этом сердечник делается из магнитомягкого материала, например ковкого железа. Соленоид ведет себя как магнит только в том случае, когда через катушку протекает электрический ток. Электромагниты применяются в электрических звонках и реле.

Проводник в магнитном поле

На рис. 7.7 изображен проводник с током, помещенный в магнитное поле. Видно, что магнитное поле этого проводника складывается с магнитным полем постоянного магнита в зоне выше проводника и вычитается в зоне ниже проводника. Таким образом, более сильное магнитное поле находится выше проводника, а более слабое - ниже (рис. 7.8).
Если изменить направление тока в проводнике на обратное, то форма магнитного поля останется прежней, но его величина будет больше под проводником.

Магнитное поле, ток и движение

Если проводник с током поместить в магнитное поле, то на него будет действовать сила, которая пытается передвинуть проводник из области более сильного поля в область более слабого, как показано на рис. 7.8. Направление этой силы зависит от направления тока, а также от направления магнитного ноля.


Рис. 7.7. Проводник с током в магнитном поле.


Рис. 7.8. Результирующее поле

Величина силы, действующей на проводник с током, определяется как величиной магнитного поля, так и силой гика, протекающего через этот проводник.
Движение проводника, помещенного в магнитное поле, при пропускании через него тока называется принципом двигателя. На этом принципе основана работа электродвигателей, магнитоэлектрических измерительных приборов с подвижной катушкой и других устройств. Если провод ник перемещать в магнитном поле, в нем генерируется ток. Это явление называется принципом генератора. На этом принципе основана работа генераторов постоянного и переменного тока.

До сих пор рассматривалось магнитное поле, связанное только с постоянным электрическим током. В этом случае направление магнитного поля неизменно и определяется направлением постоянного дока. При протекании переменного тока создается переменное магнитное поле. Если отдельную катушку поместить в это переменное поле, то в ней будет индуцироваться (наводиться) ЭДС (напряжение). Или если две отдельные катушки расположить в непосредственной близости друг к другу, как показано на рис. 7.9. и приложить переменное напряжение к одной обмотке (W1), то между выводами второй обмотки (W2) будет возникать новое переменное напряжение (индуцированная ЭДС). Это принцип работы трансформатора .


Рис. 7.9. Индуцированная ЭДС.

В этом видео рассказывается о понятии магнетизма и электромагнетизма:

Можно показать, как пользоваться законом Ампера, определив магнитное поле вблизи провода. Зададим вопрос: чему равно поле вне длинного прямолинейного провода цилиндрического сечения? Мы сделаем одно предположение, может быть, не столь уж очевидное, но тем не менее правильное: линии поля В идут вокруг провода по окружности. Если мы сделаем такое предположение, то закон Ампера [уравнение (13.16)] говорит нам, какова величина поля. В силу симметрии задачи поле В имеет одинаковую величину во всех точках окружности, концентрической с проводом (фиг. 13.7). Тогда можно легко взять линейный интеграл от B·ds. Он равен просто величине В, умноженной на длину окружности. Если радиус окружности равен r, то

Полный ток через петлю есть просто ток / в проводе, поэтому

Напряженность магнитного поля спадает обратно пропорционально r, расстоянию от оси провода. При желании уравнение (13.17) можно записать в векторной форме. Вспоминая, что В направлено перпендикулярно как I, так и r, имеем

Мы выделили множитель 1/4πε 0 с 2 , потому что он часто появляется. Стоит запомнить, что он равен в точности 10 - 7 (в системе единиц СИ), потому что уравнение вида (13.17) используется для определения единицы тока, ампера. На расстоянии 1 м ток в 1 а создает магнитное поле, равное 2·10 - 7 вебер/м 2 .

Раз ток создает магнитное поле, то он будет действовать с некоторой силой на соседний провод, по которому также проходит ток. В гл. 1 мы описывали простой опыт, показывающий силы между двумя проводами, по которым течет ток. Если провода параллельны, то каждый из них перпендикулярен полю В другого провода; тогда провода будут отталкиваться или притягиваться друг к другу. Когда токи текут в одну сторону, провода притягиваются, когда токи противоположно направлены,— они отталкиваются.

Возьмем другой пример, который тоже можно проанализировать с помощью закона Ампера, если еще добавить кое-какие сведения о характере поля. Пусть имеется длинный провод, свернутый в тугую спираль, сечение которой показано на фиг. 13.8. Такая спираль называется соленоидом. На опыте мы наблюдаем, что когда длина соленоида очень велика по сравнению с диаметром, то поле вне его очень мало по сравнению с полем внутри. Используя только этот факт и закон Ампера, можно найти величину поля внутри.

Поскольку поле остается внутри (и имеет нулевую дивергенцию), его линии должны идти параллельно оси, как показано на фиг. 13.8. Если это так, то мы можем использовать закон Ампера для прямоугольной «кривой» Г на рисунке. Эта кривая проходит расстояние L внутри соленоида, где поле, скажем, равно В о, затем идет под прямым углом к полю и возвращается назад по внешней области, где полем можно пренебречь. Линейный интеграл от В вдоль этой кривой равен в точности В 0 L, и это должно равняться 1/ε 0 с 2 , умноженному на полный ток внутри Г, т. е. на NI (где N - число витков соленоида на длине L ). Мы имеем

Или же, вводя n - число витков на единицу длины соленоида (так что n = N/L ), мы получаем

Что происходит с линиями В, когда они доходят до конца соленоида? По-видимому, они как-то расходятся и возвращаются в соленоид с другого конца (фиг. 13.9). В точности такое же поле наблюдается вне магнитной палочки. Ну а что же такое магнит? Наши уравнения говорят, что поле В возникает от присутствия токов. А мы знаем, что обычные железные бруски (не батареи и не генераторы) тоже создают магнитные поля. Вы могли бы ожидать, что в правой части (13.12) или (16.13) должны были бы быть другие члены, представляющие «плотность намагниченного железа» или какую-нибудь подобную величину. Но такого члена нет. Наша теория говорит, что магнитные эффекты железа возникают от каких-то внутренних токов уже учтенных членом j.

Вещество устроено очень сложно, если рассматривать его с глубокой точки зрения; в этом мы уже убедились когда пытались понять диэлектрики. Чтобы не прерывать нашего изложения, отложим подробное обсуждение внутреннего механизма магнитных материалов типа железа. Пока придется принять, что любой магнетизм возникает за счет токов и что в постоянном магните имеются постоянные внутренние токи. В случае железа эти токи создаются электронами, вращающимися вокруг собственных осей. Каждый электрон имеет такой спин, который соответствует крошечному циркулирующему току. Один электрон, конечно, не дает большого магнитного поля, но в обычном куске вещества содержатся миллиарды и миллиарды электронов. Обычно они вращаются любым образом, так что суммарный эффект исчезает. Удивительно то, что в немногих веществах, подобных железу, большая часть электронов крутится вокруг осей, направленных в одну сторону,— у железа два электрона из каждого атома принимают участие в этом совместном движении. В магните имеется большое число электронов, вращающихся в одном направлении, и, как мы увидим, их суммарный эффект эквивалентен току, циркулирующему по поверхности магнита. (Это очень похоже на то, что мы нашли в диэлектриках,— однородно поляризованный диэлектрик эквивалентен распределению зарядов на его поверхности.) Поэтому не случайно, что магнитная палочка эквивалентна соленоиду.