Что такое фиш анализ при раке молочной железы? Что он показывает? FISH-тест: быстрая диагностика рака Метод флуоресцентной гибридизации

Рак молочной железы нельзя недооценивать. Он может затронуть абсолютно всех – и молодых, и старых, и женщин, и мужчин. Чрезвычайная сложность лечения, высокая смертность, растущая динамика заболеваемости являются причиной повышенного внимания к этой проблеме со стороны медицины.

На сегодняшний день нет метода лечения, на 100% гарантирующего положительный исход болезни. Существующие методы трудоемки, дорогостоящи и способны нанести большой сопутствующий урон организму.

Это одно из тех заболеваний, про которое можно сказать, что лучшее лечение – это исключение факторов риска и своевременная диагностика.

Предрасположенность к раку молочной железы

Несмотря на то, что рак впервые был описан еще в XV веке до нашей эры и у ученых есть огромное количество информации, ее все равно не хватает для полного описания этиологии рака молочной железы.

Не найдены с достаточной достоверностью факторы внешней среды, влияющие на возникновение или развитие рака. Отдельные исследования, указывающие на тот или иной канцероген, не получают полноценного признания всего медицинского сообщества. Тем не менее, есть некоторая зависимость между раком груди и следующими обстоятельствами:

Одним из самых важных вышеперечисленных факторов является фактор возраста: с годами вероятность развития рака груди возрастает на порядки. В целом, сложность вопроса этиологии РМЖ обусловлена его генной природой. Неизвестно, почему вдруг происходит сбой и ткань молочной железы начинает бесконтрольное деление, затрагивая соседние ткани и приводя к метастазам по всему организму.

Но ученые сходятся в одном: современная жизнь гораздо больше располагает к раковым заболеваниям, чем прежде.

Так, указывается на большие дозы электромагнитного излучения, плохую экологию, пониженное содержание кислорода в городах, гиподинамию, стресс и пр. Нельзя не учитывать и значительно увеличившийся возраст жизни, ведь рак – это болезнь, приходящая, как правило, в зрелом возрасте.

Необходимые анализы

Возможности положительного исхода рака напрямую связаны со сроком начала лечения, поэтому отношение к диагностике должно быть самым серьезным.

В качестве диагностических методов обязательны:

  • ежемесячная самостоятельная проверка (тест пальпацией);
  • проверка у врача раз в квартал;
  • УЗИ каждые полгода;
  • МРТ ежегодно.

Маммография (рентгенологические исследование) не рекомендуется до 30 лет, поскольку в молодом возрасте воздействия радиации лучше избегать. При подозрениях на рак молочной железы, необходимо будет пройти такие анализы:


Метод FISH-исследования

FISH-исследование (FISH-анализ) – это цитогенетический метод, применяемый для изучения мембранного белка HER2 (Human Estrogen Receptor2). При проведении FISH-исследования используют ДНК-зонды, помеченные флуоресцентной краской. Эти зонды встраиваются в необходимые участки ДНК и способны количественно определить степень амплификации HER2. Поскольку исследование проводится в динамике, и гены продолжают делиться, можно оценить соотношение числа копий гена HER2 с числом копий нормально делящегося участка. Если оно больше или равно 2, результат считается HER2-положительным.

FISH-анализ играет важнейшую роль в прогнозировании рака и выбора принципа лечения. Так, амплификация или повышенная активность этого белка встречается в 30% случаев рака и требует особых методов лечения, направленных на угнетение его функции. В нормальном состоянии HER2 контролирует рост, деление и самовосстановление клеток. В случае заболевания раком этот белок производит слишком много мембранных рецепторов и дает клеткам команду на неконтролируемое деление. Так клетка превращается в раковую.

При положительном результате FISH-теста назначается лечение, направленное на супрессию HER2. Основным лекарством на сегодняшний день является Герцептин. Если не проводить этот тест или игнорировать его результаты, выбор метода лечения окажется неправильным, и рак перейдет в терминальную стадию. Кроме того, такой рак отличается более агрессивным развитием, чем HER2-негативный.

Вместе с FISH-анализом проводят имунногистохимический анализ. Это тоже генный способ исследования белка HER2, но в случае с иммуногистохимическим анализом выявляется количество белка HER2 не в клетке, а в конкретно взятом образце.

От фиш-метода он отличается стоимостью, но это на выходе дает менее информативные результаты, которые зависят от исследователя, лаборатории и применяемых критериев. Количество белка HER2 определяется по окраске исследуемого образца и оценивается по шкале от нуля до трех. В совокупности эти два метода являются золотым стандартом исследования HER2-статуса пациента.

Таким образом, несмотря на свой имидж, рак груди вполне поддается успешному лечению. В арсенале онкологов – все передовые достижения медицины. Все эти средства вполне доступны самому обычному гражданину.

Главное в успешном исходе болезни – своевременная сдача анализов на рак молочной железы, выбор правильного метода лечения и ранее его начало. Не стоит отчаиваться при отсутствии результатов, ведь положительный эмоциональный фон тоже оказывает значительное влияние на ход заболевания.

Метод FISH-окраски (fluorescent in situ hybridization) разработан в Ливерморской национальной лаборатории (США) в 1986 г. Это принципиально новый метод изучения хромосом – метод флюоросцентного выявления ДНК путем гибридизации in situ со специфическими молекулярными зондами. Метод основан на способности хромосомной ДНК связываться при определенных условиях с фрагментами ДНК (ДНК-зондами), которые включают нуклеотидные последовательности комплементарные хромосомной ДНК. ДНК-зонды предварительно метят специальными веществами (например, биотином или дигоксигенином). Меченные ДНК-зонды наносят на цитогенетические препараты подготовленных для гибридизации метафазных хромосом. После того как произошла гибридизация, препараты обрабатывают специальными флюросцентными красителями, конъюгированными с веществами, способными избирательно присоединяться к биотину или дигоксигенину. Каждая хромосома имеет специфическую окраску. Гибридизация может проводиться также с зондами меченными радиоактивной меткой. Цитогенетический анализ проводится под люминесцентным микроскопом в ультрафиолетовом свете.

FISH-метод используется для выявление мелких делеций и транслокаций. Хромосомные обмены (транслокации и дицентрики) между разноокрашенными хромосомами легко определяются как разноцветные структуры.

Конец работы -

Эта тема принадлежит разделу:

Учебный модуль. Биология клетки

Высшего профессионального образования.. башкирский государственный медицинский университет.. министерства здравоохранения и социального развития..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Учебный модуль. Основы общей и медицинской генетики
(методические указания для студентов) Учебная дисциплина Биология Для направления подготовки Лечебное дело Ко

Правила оформления лабораторной работы
Необходимым элементом микроскопического изучения объекта является его зарисовка в альбом. Цель зарисовки - лучше понять и закрепить в памяти строение объекта, форму отдельных структ

Практическая работа
1. Приготовление временного препарата «Клетки пленки лука» Для того, чтобы приготовить временный препарат с пленкой лука, снимите

Структура цитоплазматических мембран. Транспортная функция мембран
2. Учебные цели: Знать: - строение универсальной биологической мембраны - закономерности пассивного транспорта веществ через мембраны

Строение эукариотических клеток. Цитоплазма и ее компоненты
2. Учебные цели: Знать: - особенности организации эукариотических клеток - строение и функцию органоидов цитоплазмы

Органоиды, участвующие в синтезе веществ
В любой клетке совершается синтез свойственных ей веществ, являющихся либо строительным материалом для новообразующихся структур взамен изношенных, либо ферментами, участвующими в биохимических реа

Органоиды с защитной и пищеварительной функцией
Лизосомы Эти органоиды известны с 50-х годов XX столетия, когда бельгийский биохимик де Дюв обнаружил в клетках печени мелкие гранулы, содержащие гидролитические

Органоиды, участвующие в энергообеспечении клетки
Подавляющее большинство функций клетки сопряжено с затратой энергии. Живая клетка образует ее в результате постоянно протекающих окислительно-восстановительных процессов, составляющ

Органоиды, участвующие в делении и движении клеток
К ним относятся клеточный центр и его производные - реснички и жгутики. Клеточный центр Клеточный центр имеется в животных клетках и у неко

Практическая работа №1
1. Микроскопический анализ постоянного препарата «Комплекс Гольджи в клетках спинального ганглия» На препарате нервные клетки им

Рибосомы
Выявляются при помощи электронной микроскопии в клетках всех организмов про- и эукариотов, их размер 8-35 нм, они прилегают к внешней мембране эндоплазматической сети. На рибосомах осуществляется с

Гранулярная эндоплазматическая сеть
Рассмотреть субмикроскопическое строение шероховатой эндоплазматической сети на электронной микрофотографии. Выявляются три участка ацинарных клеток поджелудочной железы голодающей летучей мыши. До

Цитоплазматические микротрубочки
Цитоплазматические трубочки обнаружены в клетках всех животных и растительных организмов. Это цилиндрические, нитевидные образования длиной 20-30 мкм, диаметром 1

Митотическая активность в тканях и клетках
В настоящее время изучены митотические циклы и режим митотической активности многих тканей животных и растений. Оказалось, что каждой ткани присущ определенный уровень митотической актив­ности. О м

Митоз (непрямое деление) в клетках корешка лука
При малом увеличении микроскопа найти зону размножения кончика лука, поставить в центр поля зрения участок с хорошо заметными активно делящимися клетками. Затем настроить препарат на большое увелич

Амитоз (прямое деление) в клетках печени мыши
Рассмотреть клетки печени мыши при большом увеличении микроскопа. На препарате клетки имеют многогранную форму. В неделящихся клетках ядро округлое с ядрышком. В делящихся клетках, приступивших к д

Синкарион яйцеклетки аскариды
При малом увеличении микроскопа найдите срез матки аскариды, заполненной фолликулами с яйцеклетками. Рассмотрите препарат при большом увеличении. Цитоплазма в яйцеклетках сжимается и отслаивается о

Структура и функции ДНК и РНК. Строение генов и регуляция экспрессии генов про- и эукариот. Этапы биосинтеза белка
2. Учебные цели: Знать: - химический состав и особенности организации нуклеиновых кислот; - различия между ДНК и РНК;

Закономерности наследования признаков при моногибридном скрещивании. Виды взаимодействия аллельных генов
2. Учебные цели: Знать: - закономерности моногибридного скрещивания; - I и II законы Менделя; - виды взаимодейс

Закон независимого наследования признаков. Виды взаимодействия неаллельных генов
2. Учебные цели: Знать: - закономерности ди- и полигибридного скрещивания; - III закон Менделя; - виды взаимоде

Изменчивость как свойство живого, ее формы. Фенотипическая (модификационная или ненаследственная) изменчивость. Генотипическая изменчивость
2. Учебные цели: Знать: - основные формы изменчивости; - получить представления о пенетрантности и экспрессивности призн

Самостоятельная работа студентов под контролем преподавателя
Практическая работа Определение степени вариабельности признака и коэффициента вариации в зависимости от условий окружающей среды.

Анализ родословных
Не все методы генетики применимы к анализу наследования тех или иных признаков у человека. Однако по исследованию фенотипов нескольких поколений родственников можно установить характер наследования

Близнецовый метод исследования генетики человека
Близнецовый метод позволяет оценить относительную роль генетических и средовых факторов в развитии конкретного признака или заболевания. Близнецы бывают монозиготные (однояйцевые) и дизиготные (раз

Дерматоглифический метод исследования генетики человека
Дерматоглифический анализ - это изучение папиллярных узоров пальцев, ладоней и стоп. На этих участках кожи имеются крупные дермальные сосочки, а покрывающий их эпидермис образует г

Цитогенетический метод в исследовании генетики человека
Среди многих методов изучения наследственной патологии человека цитогенетический метод занимает существенное место. С помощью цитогенетического метода возможен анализ материальных основ наследствен

Изучение хромосомного набора
Может проводиться двумя способами: 1) прямым методом - исследование метафазных хромосом в делящихся клетках, например, костного мозга (ис

Практическая работа
1. Просмотр демонстрационного препарата «Кариотип человека» в цитогенетической лаборатории При увеличении Х90 в поле зрения видны лейкоциты

Анализ кариотипа у больных с хромосомными болезнями (по фотографиям)
№ 1. трисомия по 13 хромосоме (синдром Патау). Кариотип 47, +13. № 2. трисомия по 18 хромосоме (синдром Эдвардса). Кариотип 47, +18. № 3. трисомия по 21 хромосоме (болезнь Дауна).

Проведение дактилоскопического анализа
Для изготовления собственных отпечатков пальцев необходимо следующее оборудование: фотографический каток, стекло площадью 20х20 см2, кусок поролона, типографская краска (или аналогичный

Цитогенетический анализ кариотипа (по микрофотографиям метафазных пластинок)
1. Зарисовать метафазную пластинку. 2. Подсчитать общее количество хромосом. 3. Идентифицировать хромосомы групп A (3 пары крупных метацентрических хромосом), В (две пары крупных

Экспресс-метод исследования Х-полового хроматина в ядрах эпителия слизистой оболочки полости рта
Перед взятием соскоба пациента просят обкусать зубами слизистую оболочку щеки и внутреннюю поверхность щеки протереть марлевой салфеткой. Эта процедура необходима для удаления разрушенных клеток, г

Популяционно-статистический метод
Популяция – это совокупность особей одного вида, длительно населяющих одну территорию, относительно изолированных от других групп особей данного вида, свободно скрещивающихся между собой и дающих п

Биохимический метод
Биохимические методы основаны на изучении активности ферментных систем (либо по активности самого фермента, либо по количеству конечных продуктов реакции, катализируемой этим ферментом). Биохимичес

Молекулярно-генетический метод
В основе всех молекулярно-генетических методов лежит изучение структуры ДНК. Этапы анализа ДНК: 1. Выделение ДНК из клеток, содержащих ядра (крови

Полимеразная цепная реакция синтеза ДНК
Полимеразная цепная реакция (ПЦР) - метод амплификации (размножения) ДНК in vitro, с помощью которого в течение нескольких часов можно выявить и размножить интересующий фрагмент ДНК размером от 80


№ п/п ФИО Генотип Иванов АА Петров Аа

Наблюдаемые частоты генотипов и аллелей
Генотипы, аллели Число случаев Частота (в долях) АА 1 / 5 = 0,2 Аа

Наблюдаемые и ожидаемые частоты генотипов и аллелей
Наблюдаемое число случаев Наблюдаемая частота Ожидаемая частота АА (p2)

Наблюдаемые частоты генотипов и аллелей
№ п/п Умение сворачивать язык в трубочку Генотипы Умею (да) А_

Краткий ответ : Метод флюоресцентной гибридизации in situ (FISH - fluorescence in situ hybridization) включа­ет применение уникальных нуклеотидных после­довательностей ДНК в качестве зонда для поиска нужных последовательностей ДНК в материале, полученном от пациента. Метод основан на комплементарном связывании ДНК-зонда с ДНК метафазных хромосом или интерфазных клеток. ДНК-зонд и исследуемую ДНК денатурируют, образуется одноцепочная ДНК. ДНК-зонд до­бавляют к препарату хромосом, инкубируют определенное время. Присутствие или отсутствие меченного флюо­рохромом зонда в составе ДНК после гибридизации определяется при исследовании хромосом с помо­щью флюоресцентной микроскопии.

Развёрнутый ответ : Метод флуоресцентной гибридизации in situ позволяет выявлять индивидуальные хромосомы или их отдельные участки на препаратах метафазных хромосом или интерфазных ядрах на основе комплементарного взаимодействия ДНК-зонда, конъюгированного с флуоресцентной меткой и искомого участка на хромосоме. Для визуализации на хромосоме пептидно-нуклеиновых соединений применяют PNA-зонды на основе белкового продукта.
Метод основан на комплементарном связывании ДНК-зонда с ДНК метафазных хромосом или интерфазных клеток и включает следующие этапы:
1. Денатурация двухцепочечной ДНК зонда и ДНК мишени до одноцепочечных под воздействием высокой температуры или химических агентов.
2. Гибридизация ДНК-зонда с ДНК-мишенью по принципу комплементарности с образованием двухцепочечной гибридной молекулы
3. Постгибридизационная отмывка для удаления негибридизовавшегося ДНК-зонда
4. Анализ гибридизационных сигналов с люминисцентном микроскопе

Преимущества метода молекулярно-генетической диагностики FISH включают быстрый ана­лиз большого числа клеток, высокую чувствитель­ность и специфичность, возможность исследовать некультивируемые и неделящиеся клетки.
Недостатки метода заключаются в невозможности получить информацию о физическом состоянии исследу­емой ДНК или участка хромосомы.
FISH применяют в пренатальной молекулярно-генетической диагностике и для характеристики опухолей; в педиатрической практике его используют, как правило, для иденти­фикации субмикроскопических делеций, ассоции­рованных со специфическими пороками развития. Синдромы, в основе которых лежат микроделеции, раньше считались заболеваниями неизвестной этиологии, так как хромосомные делеции и пере­стройки, вызывающие развитие этих заболеваний, обычно не визуализируются при традиционных методах хромосомного анализа. Такие мелкие де­леции в специфических участках хромосом мож­но с большой точностью выявить методом FISH. К заболеваниям, обусловленным субмикроскопическими делециями, относятся синдромы Прадера-Вилли, Ангельмана, Вильямса, Миллера-Дикера, Смит-Мадженис и велокардиофациальный синдром . FISH облегчает диагностику этих синдромов в нетипичных случаях, особенно в младенческом возрасте, когда еще отсутствуют многие диагностически значимые признаки забо­левания. Применение этого метода молекулярно-генетической диагностики целесообразно также в подростковом и во взрослом возрасте, ког­да типичные клинические признаки заболевания, характерные для детского возраста, претерпевают изменения.

121. ДНК-зонды. Их применение в определении наследственных заболеваний.

Краткий обзор

ДНК – зонд - это короткий фрагмент ДНК, конъюгированный с флуоресцеином, ферментно, или радиоактивным изотопом, который используется для гибридизации с комплементарным участком молекулы ДНК – мишени.

Основная часть

Системы ДНК-диагностики

Информация о всем многообразии свойств организма заключена в его генетическом материале. Так, патогенность бактерий определяется наличием у них специфического гена или набора генов, а наследственное генетическое заболевание возникает в результате повреждения определенного гена. Сегмент ДНК, детерминирующий данный биологический признак, имеет строго определенную нуклеотидную последовательность и может служить диагностическим маркером.

В основе многих быстрых и надежных диагностических методов лежит гибридизация нуклеиновых кислот - спаривание двух комплементарных сегментов разных молекул ДНК. Процедура в общих чертах состоит в следующем.

1. Фиксация одноцепочечной ДНК-мишени на мембранном фильтре.

2. Нанесение меченой одноцепочечной ДНК-зонда, которая при определенных условиях (температуре и ионной силе) спаривается с ДНК-мишенью.

3. Промывание фильтра для удаления избытка несвязавшейся меченой ДНК-зонда.

4. Детекция гибридных молекул зонд/мишень.

В диагностических тестах, основанных на гибридизации нуклеиновых кислот, ключевыми являются три компонента: ДНК-зонд, ДНК-мишень и метод детекции гибридизационного сигнала. Система детекции должна быть в высшей степени специфичной и высокочувствительной.

*Флуоресцеин (диоксифлуоран, уранин А) - органическое соединение, флуоресцентный краситель. В аналитической химии флуоресцеин используется в качестве люминесцентного кислотно-основного индикатора. В биохимии и молекулярной биологии изотиоцианатные производные флуоресцеина в качестве биологических красок для определения антигенов и антител.

* Детекция – это обнаружение, выявление, нахождение чего либо.

*конъюгирование=сопряжение

*Если в одной "пробирке" провести плавление и отжиг смеси ДНК, например, человека и мыши, то некоторые участки цепей ДНК мыши будут воссоединяться с комплементарными участками цепей ДНК человека с образованием гибридов. Число таких участков зависит от степени родства видов. Чем ближе виды между собой, тем больше участков комплементарности нитей ДНК. Это явление называется гибридизация ДНК-ДНК.

122. Методы и условия применения прямой ДНК-диагностики.

Краткий обзор:

С помощью прямых методов выявляются нарушения в первичной нуклеотидной последовательности ДНК (мутации и их типы). Прямые методы отличаются точностью, достигающей почти 100 %.

Целью прямой диагностики является идентификация мутантных аллелей (нарушения в первичной нуклеотидной последовательности ДНК, мутации и их типы).

Недостатком метода прямой ДНК-диагностики является необходимость знания точной локализации гена и спектра его мутаций. Методы прямой ДНК-диагностики показаны для таких заболеваний, как фенилкетонурия (мутация R408W), муковисцидоз - (наиболее частая мутация delF508), хорея Гентингтона (экспансия тринуклеотидных повторов-CTG-повторы) и др.

Полный ответ:

С помощью прямых методов выявляются нарушения в первичной нуклеотидной последовательности ДНК (мутации и их типы). Прямые методы отличаются точностью, достигающей почти 100 %. Однако на практике указанные методы могут применяться при определенных условиях:

1) известной цитогенетической локализации гена, ответственного за развитие наследственного заболевания,

2) должен быть клонированным ген заболевания и известна его нуклеотидная последовательность.

Целью прямой диагностики является идентификация мутантных аллелей (нарушения в первичной нуклеотидной последовательности ДНК, мутации и их типы). Высокая точность метода прямой ДНК-диагностики в большинстве случаев не требует ДНК-анализа всех членов семьи, так как выявление мутации в соответствующем гене позволяет почти со 100-процентной точностью подтвердить диагноз и определить генотип всех членов семьи больного ребенка, включая гетерозиготных носителей.

Недостатком метода прямой ДНК-диагностики является необходимость знания точной локализации гена и спектра его мутаций.

Методы прямой ДНК-диагностики показаны для таких заболеваний, как фенилкетонурия (мутация R408W), муковисцидоз - (наиболее частая мутация delF508), хорея Гентингтона (экспансия тринуклеотидных повторов-CTG-повторы) и др.

Однако к настоящему времени гены многих заболеваний не картированы, неизвестна их экзонно-интронная организация, и многие наследственные болезни отличаются выраженной генетической гетерогенностью, что не позволяет в полной мере использовать прямые методы ДНК-диагностики. Поэтому информативность метода прямой ДНК-диагностики широко варьирует. Так, при диагностике хореи Гентингтона, ахондроплазии она составляет 100 %, при фенилкетонурии, муковосицидозе, адреногенитальном синдроме - от 70 до 80 %, а при болезни Вильсона-Коновалова и миопатии Дюшенна/Бекера - 45-60 %. В связи с этим используются косвенные методы молекулярно-генетической диагностики наследственных болезней.

Руководитель направления
„Онкогенетика“

Жусина
Юлия Геннадьевна

Окончила педиатрический факультет Воронежского государственного медицинского университета им. Н.Н. Бурденко в 2014 году.

2015 - интернатура по терапии на базе кафедры факультетской терапии ВГМУ им. Н.Н. Бурденко.

2015 - сертификационный курс по специальности «Гематология» на базе Гематологического научного центра г. Москвы.

2015-2016 – врач терапевт ВГКБСМП №1.

2016 - утверждена тема диссертации на соискание ученой степени кандидата медицинских наук «изучение клинического течения заболевания и прогноза у больных хронической обструктивной болезнью легких с анемическим синдромом». Соавтор более 10 печатных работ. Участник научно-практических конференций по генетике и онкологии.

2017 - курс повышения квалификации по теме: «интерпретация результатов генетических исследований у больных с наследственными заболеваниями».

С 2017 года ординатура по специальности «Генетика» на базе РМАНПО.

Руководитель направления
„Генетика“

Канивец
Илья Вячеславович

Канивец Илья Вячеславович, врач-генетик, кандидат медицинских наук, руководитель отдела генетики медико-генетического центра Геномед. Ассистент кафедры медицинской генетики Российской медицинской академии непрерывного профессионального образования.

Окончил лечебный факультет Московского государственного медико-стоматологического университета в 2009 году, а в 2011 – ординатуру по специальности «Генетика» на кафедре Медицинской генетики того же университета. В 2017 году защитил диссертацию на соискание ученой степени кандидата медицинских наук на тему: Молекулярная диагностика вариаций числа копий участков ДНК (CNVs) у детей с врожденными пороками развития, аномалиями фенотипа и/или умственной отсталостью при использовании SNP олигонуклеотидных микроматриц высокой плотности»

C 2011-2017 работал врачом-генетиком в Детской клинической больнице им. Н.Ф. Филатова, научно-консультативном отделе ФГБНУ «Медико-генетический научный центр». С 2014 года по настоящее время руководит отделом генетики МГЦ Геномед.

Основные направления деятельности: диагностика и ведение пациентов с наследственными заболеваниями и врожденными пороками развития, эпилепсией, медико-генетическое консультирование семей, в которых родился ребенок с наследственной патологией или пороками развития, пренатальная диагностика. В процессе консультации проводится анализ клинических данных и генеалогии для определения клинической гипотезы и необходимого объема генетического тестирования. По результатам обследования проводится интерпретация данных и разъяснение полученной информации консультирующимся.

Является одним из основателей проекта «Школа Генетики». Регулярно выступает с докладами на конференциях. Читает лекции для врачей генетиков, неврологов и акушеров-гинекологов, а также для родителей пациентов с наследственными заболеваниями. Является автором и соавтором более 20 статей и обзоров в российских и зарубежных журналах.

Область профессиональных интересов – внедрение современных полногеномных исследований в клиническую практику, интерпретация их результатов.

Время приема: СР, ПТ 16-19

Руководитель направления
„Неврология“

Шарков
Артем Алексеевич

Шарков Артём Алексеевич – врач-невролог, эпилептолог

В 2012 году обучался по международной программе “Oriental medicine” в университете Daegu Haanu в Южной Корее.

С 2012 года - участие в организации базы данных и алгоритма для интерпретации генетических тестов xGenCloud (https://www.xgencloud.com/, Руководитель проекта - Игорь Угаров)

В 2013 году окончил Педиатрический факультет Российского национального исследовательского медицинского университета имени Н.И. Пирогова.

C 2013 по 2015 год обучался в клинической ординатуре по неврологии в ФГБНУ «Научный центр неврологии».

С 2015 года работает неврологом, научным сотрудником в Научно- исследовательском клиническом институте педиатрии имени академика Ю.Е. Вельтищева ГБОУ ВПО РНИМУ им. Н.И. Пирогова. Также работает врачом- неврологом и врачом лаборатории видео-ЭЭГ мониторинга в клиниках «Центр эпилептологии и неврологии им. А.А.Казаряна» и «Эпилепси-центр».

В 2015 году прошел обучение в Италии на школе «2nd International Residential Course on Drug Resistant Epilepsies, ILAE, 2015».

В 2015 году повышение квалификации - «Клиническая и молекулярная генетика для практикующих врачей», РДКБ, РОСНАНО.

В 2016 году повышение квалификации - «Основы молекулярной генетики» под руководством биоинформатика, к.б.н. Коновалова Ф.А.

С 2016 года - руководитель неврологического направления лаборатории "Геномед".

В 2016 году прошел обучение в Италии на школе «San Servolo international advanced course: Brain Exploration and Epilepsy Surger, ILAE, 2016».

В 2016 году повышение квалификации - "Инновационные генетические технологии для врачей", "Институт лабораторной медицины".

В 2017 году – школа «NGS в медицинской генетике 2017», МГНЦ

В настоящее время проводит научные исследования в области генетики эпилепсии под руководством профессора, д.м.н. Белоусовой Е.Д. и профессора, д.м.н. Дадали Е.Л.

Утверждена тема диссертации на соискание ученой степени кандидата медицинских наук "Клинико-генетические характеристики моногенных вариантов ранних эпилептических энцефалопатий".

Основные направления деятельности – диагностика и лечение эпилепсии у детей и взрослых. Узкая специализация – хирургическое лечение эпилепсии, генетика эпилепсий. Нейрогенетика.

Научные публикации

Шарков А., Шаркова И., Головтеев А., Угаров И. «Оптимизация дифференциальной диагностики и интерпретации результатов генетического тестирования экспертной системой XGenCloud при некоторых формах эпилепсий». Медицинская генетика, № 4, 2015, с. 41.
*
Шарков А.А., Воробьев А.Н., Троицкий А.А., Савкина И.С., Дорофеева М.Ю., Меликян А.Г., Головтеев А.Л. "Хирургия эпилепсии при многоочаговом поражении головного мозга у детей с туберозным склерозом." Тезисы XIV Российского Конгресса «ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ В ПЕДИАТРИИ И ДЕТСКОЙ ХИРУРГИИ». Российский Вестник Перинатологии и Педиатрии, 4, 2015. - с.226-227.
*
Дадали Е.Л., Белоусова Е.Д., Шарков А.А. "Молекулярно-генетические подходы к диагностике моногенных идиопатических и симптоматических эпилепсий". Тезис XIV Российского Конгресса «ИННОВАЦИОННЫЕ ТЕХНОЛОГИИ В ПЕДИАТРИИ И ДЕТСКОЙ ХИРУРГИИ». Российский Вестник Перинатологии и Педиатрии, 4, 2015. - с.221.
*
Шарков А.А., Дадали Е.Л., Шаркова И.В. «Редкий вариант ранней эпилептической энцефалопатии 2 типа, обусловленной мутациями в гене CDKL5 у больного мужского пола». Конференция "Эпилептология в системе нейронаук". Сборник материалов конференции: / Под редакцией: проф. Незнанова Н.Г., проф. Михайлова В.А. СПб.: 2015. – с. 210-212.
*
Дадали Е.Л., Шарков А.А., Канивец И.В., Гундорова П., Фоминых В.В., Шаркова И,В,. Троицкий А.А., Головтеев А.Л., Поляков А.В. Новый аллельный вариант миоклонус-эпилепсии 3 типа, обусловленный мутациями в гене KCTD7// Медицинская генетика.-2015.- т.14.-№9.- с.44-47
*
Дадали Е.Л., Шаркова И.В., Шарков А.А., Акимова И.А. «Клинико-генетические особенности и современные способы диагностики наследственных эпилепсий». Сборник материалов «Молекулярно-биологические технологии в медицинской практике» / Под ред. чл.-корр. РАЕН А.Б. Масленникова.- Вып. 24.- Новосибирск: Академиздат, 2016.- 262: с. 52-63
*
Белоусова Е.Д., Дорофеева М.Ю., Шарков А.А. Эпилепсия при туберозном склерозе. В "Болезни мозга, медицинские и социальные аспекты" под редакцией Гусева Е.И., Гехт А.Б., Москва; 2016; стр.391-399
*
Дадали Е.Л., Шарков А.А., Шаркова И.В., Канивец И.В., Коновалов Ф.А., Акимова И.А. Наследственные заболевания и синдромы, сопровождающиеся фебрильными судорогами: клинико-генетические характеристики и способы диагностики. //Русский Журнал Детской Неврологии.- Т. 11.- №2, с. 33- 41. doi: 10.17650/ 2073-8803- 2016-11- 2-33- 41
*
Шарков А.А., Коновалов Ф.А., Шаркова И.В., Белоусова Е.Д., Дадали Е.Л. Молекулярно-генетические подходы к диагностике эпилептических энцефалопатий. Сборник тезисов «VI БАЛТИЙСКИЙ КОНГРЕСС ПО ДЕТСКОЙ НЕВРОЛОГИИ» / Под редакцией профессора Гузевой В.И. Санкт- Петербург, 2016, с. 391
*
Гемисферотомии при фармакорезистентной эпилепсии у детей с билатеральным поражением головного мозга Зубкова Н.С., Алтунина Г.Е., Землянский М.Ю., Троицкий А.А., Шарков А.А., Головтеев А.Л. Сборник тезисов «VI БАЛТИЙСКИЙ КОНГРЕСС ПО ДЕТСКОЙ НЕВРОЛОГИИ» / Под редакцией профессора Гузевой В.И. Санкт-Петербург, 2016, с. 157.
*
*
Статья: Генетика и дифференцированное лечение ранних эпилептических энцефалопатий. А.А. Шарков*, И.В. Шаркова, Е.Д. Белоусова, Е.Л. Дадали. Журнал неврологии и психиатрии, 9, 2016; Вып. 2doi: 10.17116/jnevro 20161169267-73
*
Головтеев А.Л., Шарков А.А., Троицкий А.А., Алтунина Г.Е., Землянский М.Ю., Копачев Д.Н., Дорофеева М.Ю. "Хирургическое лечение эпилепсии при туберозном склерозе" под редакцией Дорофеевой М.Ю., Москва; 2017; стр.274
*
Новые международные классификации эпилепсий и эпилептических приступов Международной Лиги по борьбе с эпилепсией. Журнал неврологии и психиатрии им. C.C. Корсакова. 2017. Т. 117. № 7. С. 99-106

Руководитель направления
"Пренатальная диагностика"

Киевская
Юлия Кирилловна

В 2011 году Окончила Московский Государственный Медико-Стоматологический Университет им. А.И. Евдокимова по специальности «Лечебное дело» Обучалась в ординатуре на кафедре Медицинской генетики того же университета по специальности «Генетика»

В 2015 году окончила интернатуру по специальности Акушерство и Гинекология в Медицинском институте усовершенствования врачей ФГБОУ ВПО «МГУПП»

С 2013 года ведет консультативный прием в ГБУЗ «Центр Планирования Семьи и Репродукции» ДЗМ

С 2017 года является руководителем направления «Пренатальная Диагностика» лаборатории Геномед

Регулярно выступает с докладами на конференциях и семинарах. Читает лекции для врачей различных специальной в области репродуции и пренатальной диагностики

Проводит медико-генетическое консультирование беременных по вопросам пренатальной диагностики с целью предупреждения рождения детей с врождёнными пороками развития, а так же семей с предположительно наследственной или врожденной патологией. Проводит интерпретацию полученных результатов ДНК-диагностики.

СПЕЦИАЛИСТЫ

Латыпов
Артур Шамилевич

Латыпов Артур Шамилевич – врач генетик высшей квалификационной категории.

После окончания в 1976 году лечебного факультета Казанского государственного медицинского института в течение многих работал сначала врачом кабинета медицинской генетики, затем заведующим медико-генетическим центром Республиканской больницы Татарстана, главным специалистом министерства здравоохранения Республики Татарстан, преподавателем кафедр Казанского медуниверситета.

Автор более 20 научных работ по проблемам репродукционной и биохимической генетики, участник многих отечественных и международных съездов и конференций по проблемам медицинской генетики. Внедрил в практическую работу центра методы массового скрининга беременных и новорожденных на наследственные заболевания, провел тысячи инвазивных процедур при подозрении на наследственные заболевания плода на разных сроках беременности.

С 2012 года работает на кафедре медицинской генетики с курсом пренатальной диагностики Российской академии последипломного образования.

Область научных интересов – метаболические болезни у детей, дородовая диагностика.

Время приема: СР 12-15, СБ 10-14

Прием врачей осуществляется по предварительной записи.

Врач-генетик

Габелко
Денис Игоревич

В 2009 году закончил лечебный факультет КГМУ им. С. В. Курашова (специальность «Лечебное дело»).

Интернатура в Санкт-Петербургской медицинской академии последипломного образования Федерального агентства по здравоохранению и социальному развитию (специальность «Генетика»).

Интернатура по терапии. Первичная переподготовка по специальности «Ультразвуковая диагностика». С 2016 года является сотрудником кафедры кафедры фундаментальных основ клинической медицины института фундаментальной медицины и биологии.

Сфера профессиональных интересов: пренатальная диагностика, применение современных скрининговых и диагностических методов для выявления генетической патологии плода. Определение риска повторного возникновения наследственных болезней в семье.

Участник научно-практических конференций по генетике и акушерству и гинекологии.

Стаж работы 5 лет.

Консультация по предварительной записи

Прием врачей осуществляется по предварительной записи.

Врач-генетик

Гришина
Кристина Александровна

Окончила в 2015 году Московский Государственный Медико-Стоматологический Университет по специальности «Лечебное дело». В том же году поступила в ординатуру по специальности 30.08.30 «Генетика» в ФГБНУ «Медико-генетический научный центр».
Принята на работу в лабораторию молекулярной генетики сложно наследуемых заболеваний (заведующий – д.б.н. Карпухин А.В.) в марте 2015 года на должность лаборанта-исследователя. С сентября 2015 года переведена на должность научного сотрудника. Является автором и соавтором более 10 статей и тезисов по клинической генетике, онкогенетике и молекулярной онкологии в российских и зарубежных журналах. Постоянный участник конференций по медицинской генетике.

Область научно-практических интересов: медико-генетическое консультирование больных с наследственной синдромальной и мультифакториальной патологией.


Консультация врача-генетика позволяет ответить на вопросы:

являются ли симптомы у ребенка признаками наследственного заболевания какое исследование необходимо для выявления причины определение точного прогноза рекомендации по проведению и оценка результатов пренатальной диагностики все, что нужно знать при планировании семьи консультация при планировании ЭКО выездные и онлайн консультации

ринимала участие в научно-практической школе "Инновационные генетические технологии для врачей: применение в клинической практике", конференции Европейского общества генетики человека (ESHG) и других конференциях, посвященных генетике человека.

Проводит медико-генетическое консультирование семей с предположительно наследственной или врожденной патологией, включая моногенные заболевания и хромосомные аномалии, определяет показания к проведению лабораторных генетических исследований, проводит интерпретацию полученных результатов ДНК-диагностики. Консультирует беременных по вопросам пренатальной диагностики с целью предупреждения рождения детей с врождёнными пороками развития.

Врач-генетик, врач акушер-гинеколог, кандидат медицинских наук

Кудрявцева
Елена Владимировна

Врач-генетик, врач акушер-гинеколог, кандидат медицинских наук.

Специалист в области репродуктивного консультирования и наследственной патологии.

Окончила Уральскую государственную медицинскую академию в 2005 году.

Ординатура по специальности «Акушерство и гинекология»

Интернатура по специальности «Генетика»

Профессиональная переподготовка по специальности «Ультразвуковая диагностика»

Направления деятельности:

  • Бесплодие и невынашивание беременности
  • Василиса Юрьевна

    Является выпускницей Нижегородской государственной медицинской академии, лечебного факультета (специальность «Лечебное дело»). Окончила клиническую ординатуру ФБГНУ «МГНЦ» по специальности «Генетика». В 2014 году проходила стажировку в клинике материнства и детства (IRCCS materno infantile Burlo Garofolo, Trieste, Italy).

    С 2016 года работает на должности врача-консультанта в ООО «Геномед».

    Регулярно участвует в научно-практических конференциях по генетике.

    Основные направления деятельности: Консультирование по вопросам клинической и лабораторной диагностики генетических заболеваний и интерпретация результатов. Ведение пациентов и их семей с предположительно наследственной патологией. Консультирование при планировании беременности, а также при наступившей беременности по вопросам пренатальной диагностики с целью предупреждения рождения детей с врожденной патологией.

В некоторых случаях цитогенетического исследования бывает недостаточно для выдачи заключения о кариотипе, в этих случаях используют молекулярно-цитогенетические методы в частности флуоресцентную гибридизацию in situ (англ. - Fluorescence In Situ Hybridization - FISH) .

Появление новых технологий молекулярной цитогенетики, базирующихся преимущественно на in situ гибридизации нуклеиновых кислот, значительно расширило возможности хромосомной диагностики. Метод in situ гибридизации был разработан для локализации конкретных последовательностей ДНК непосредственно на цитологических препаратах. Произошел переход в идентификации хромосом и хромосомных районов с анализа цитологической организации хромосомы на анализ последовательностей ДНК, входящих в их состав. Сравнение эффективности классических цитологических методов выявления и анализа хромосомных перестроек, таких как дифференциальные окраски хромосом, с современными молекулярно-цитогенетическими технологиями показало, что при гематологических нарушениях цитологический анализ хромосом детектирует и правильно идентифицирует лишь около трети хромосомных перестроек, выявляемых при использовании спектрального кариотипирования (SKY). Еще около трети перестроек идентифицируются цитологическими методами неверно, а треть остается совсем незамеченной. Классические методы цитогенетического анализа позволяют выявлять лишь около 15 % хромосомных перестроек, идентифицируемых с помощью SKY.

В методе FISH используются флуоресцирующие молекулы для прижизненной окраски генов или хромосом. Метод используется для картирования генов и идентификации хромосомных аберраций.

Методика начинается с приготовления коротких последовательностей ДНК, называемых зондами, которые являются комплементарными по отношению к последовательностям ДНК, представляющим объект изучения. Зонды гибридизуются (связываются) с комплементарными участками ДНК и благодаря тому, что они помечены флуоресцентной меткой, позволяют видеть локализацию интересующих генов в составе ДНК или хромосом. В отличие от других методов изучения хромосом, требующих активного деления клетки, FISH можно выполнять на неделящихся клетках, благодаря чему достигается гибкость метода.

FISH может применяться для различных целей с использованием зондов трех различных типов:

  • * локус-специфичные зонды, связывающиеся с определенными участками хромосом. Данные зонды используются для идентификации имеющейся короткой последовательности выделенной ДНК, которая используется для приготовления меченого зонда и его последующей гибридизации с набором хромосом;
  • * альфоидные или центромерные зонды-повторы представляют собой повторяющиеся последовательности центромерных областей хромосом. С их помощью каждая хромосома может быть окрашена в различный цвет, что позволяет быстро определить число хромосом и отклонения от нормального их числа;
  • * зонды на всю хромосому являются набором небольших зондов, комплементарных к отдельным участкам хромосомы, но в целом покрывающими всю ее длину. Используя библиотеку таких зондов можно «раскрасить» всю хромосому и получить дифференциальный спектральный кариотип индивида. Данный тип анализа применяется для анализа хромосомных аберраций, например транслокаций, когда кусочек одной хромосомы переносится на плечо другой.

Гибридизация in situ с флуоресцентной меткой (FISH)

Материалом для исследования является кровь, костный мозг, биопсия опухоли, плацента, эмбриональные ткани или амниотическая жидкость. Образцы для исследования должны доставляться в лабораторию в свежем виде. Препараты (слайды) готовятся непосредственно из образцов ткани или после их культивирования. Могут использоваться как метафазные, так и интерфазные препараты клеток. Меченные флуоресцентными метками специфические ДНК-зонды гибридизуюся с хромосомной ДНК, причем можно одновременно использовать множественные зонды к разным локусам.

FISH является полезным и чувствительным методом цитогенетического анализа при выявлении количественных и качественных хромосомных аберраций, таких как делеции (в том числе и микроделеции), транслокации, удвоение и анэуплоидия. FISH на интерфазных хромосомах служит быстрым методом пренатальной диагностики трисомий по 21, 18 или 13 хромосомам или аберраций половых хромосом. В онкологии с помощью FISH можно выявлять рад транслокаций (bcr/abl, MLL, PML/RARA, TEL/AML1), связанных с гематологическими злокачественными новообразованиями. Метод также может использоваться для мониторинга остаточных явлений онкозаболевания после химиотерапии и пересадки костного мозга и выявления усиленных онкогенов (c-myc/n-myc), связанных с неблагоприятным прогнозом в отношении некоторых опухолей. FISH также используется для контроля приживаемости аллотрансплантата костного мозга, полученного от индивида противоположного пола.

FISH является чувствительным методом для идентификации хромосомных аберраций и одномоментного быстрого анализа большого (> 500) числа клеток. Метод обладает высокой точностью при идентификации природы хромосом и неизвестных фрагментов хромосомной ДНК.