Фармакокинетика и её этапы. Фармакокинетика состоит из взаимосвязанных этапов Фармакокинетика всасывание лекарственных веществ

I . Общая фармакология

А. Фармакокинетика

Фармакокинетика - всасывание, распределение, депонирование, превращения и выведение лекарственных веществ.

Все эти процессы связаны с проникновением лекарственных веществ через клеточную (цитоплазматическую) мембрану. Основные способы проникновения веществ через клеточную мембрану: пассивная диффузия, фильтрация, активный транспорт, облегченная диффузия, пиноцитоз.

Пассивная диффузия - проникновение веществ через мембрану в любом ее месте по градиенту концентрации (если с одной стороны мембраны концентрация вещества выше, чем с другой стороны, вещество проникает через мембрану в сторону меньшей концентрации). Так как мембраны состоят в основном из липидов, путем пассивной диффузии через клеточную мембрану легко проникают липофильные неполярные вещества, т.е. вещества, которые хорошо растворимы в липидах и не несут электрических зарядов. Наоборот, гидрофильные полярные вещества (вещества, хорошо растворимые в воде и имеющие электрические заряды) путем пассивной диффузии через мембрану практически не проникают.

Многие лекарственные вещества являются слабыми электролитами - слабокислыми соединениями или слабыми основаниями. В растворе часть таких веществ находится в неионизированной (неполярной) форме, а часть - в виде ионов, несущих электрические заряды. Ионизация кислых соединений происходит путем их диссоциации.

Ионизация оснований происходит путем их протонирования.

Путем пассивной диффузии через мембраны проникает неионизированная (неполярная) часть слабого электролита. Таким образом, пассивная диффузия слабых электролитов обратно пропорциональна степени их ионизации.

В кислой среде увеличивается ионизация оснований, а в щелочной среде - ионизация кислых соединений. Однако при этом следует учитывать показатель рК а - отрицательный логарифм константы ионизации. Численно рК а равен рН, при котором ионизирована половина молекул соединения.

Значения рК а для разных кислот и разных оснований могут существенно различаться. Можно предположить, например, что ацетилсалициловая кислота (аспирин) при рН 4,5 будет мало диссоциировать. Однако для ацетилсалициловой кислоты рК а =3,5 и результат получается неожиданным.

Для определения степени ионизации используют формулу Henderson - Hasselbalch :


Следовательно, при рН 4,5 ацетилсалициловая кислотапочти полностью диссоциирована.

Фильтрация. В клеточной мембране имеются водные каналы (водные поры), через которые проходит вода и могут проходить растворенные в воде гидрофильные полярные вещества, если размеры их молекул не превышают диаметра каналов. Этот процесс называют фильтрацией.

Так как через водные каналы цитоплазматической мембраны нет постоянного однонаправленного движения воды, ряд авторов считают, что через водные каналы гидрофильные полярные вещества проникают путем пассивной диффузии по градиенту концентрации (пассивная диффузия в водной фазе).

Однако диаметр водных каналов цитоплазматической мембраны очень мал - 0,4нм, поэтому большинство лекарственных веществ через эти каналы не проходят.

Фильтрацией называют также прохождение воды и растворенных в ней веществчерез межклеточные промежутки. Путем фильтрации через межклеточные промежутки проходят гидрофильные полярные вещества. Степень их фильтрации зависит от величины межклеточных промежутков.

В эндотелии сосудов мозга межклеточные промежутки отсутствуют и фильтрация большинства лекарственных веществ невозможна. Эндотелий сосудов мозга образует барьер, который препятствует проникновению гидрофильных полярных веществ из крови в мозг, -гематоэнцефалический барьер.

В некоторых областях головного мозга имеются «дефекты» гематоэнцефалического барьера, через которые возможно прохождение гидрофильных полярных веществ. Так, в areapostrema продолгова­того мозга гидрофильные полярные вещества могут проникать в триггер-зону рвотного центра.

Некоторые гидрофильные полярные вещества проникают через гематоэнцефалический барьер путем активного транспорта (например, леводопа).

Липофильные неполярные вещества легко проходят через гематоэнцефалический барьер путем пассивной диффузии.

В эндотелии сосудов периферических тканей (мышцы, подкожная клетчатка, внутренние органы) межклеточные промежутки достаточно велики и большинство гидрофильных полярных лекар­ственных веществ легко проходят через них путем фильтрации. При внутривенном введении эти вещества быстро проникают в ткани. При подкожном, внутримышечном введении вещества проникают из тканей в кровь и распространяются по организму.

В желудочно-кишечном тракте промежутки между клетками эпителия слизистой оболочки невелики и фильтрация веществ ограничена, поэтому в желудочно-кишечном тракте гидрофильные полярные соединения всасываются плохо. Так, гидрофильное полярное соединение неостигмин (прозерин) под кожу вводят в дозе 0,0005г, а для получения сходного эффекта при приеме внутрь требуется доза 0,015г.

Липофильные неполярные вещества в желудочно-кишечном тракте хорошо всасываются путем пассивной диффузии.

Активный транспорт - транспорт лекарственных веществ через мембраны с помощью специальных транспортных систем. Такими транспортными системами обычно являются функционально активные белковые молекулы, встроенные в цитоплазматическую мембрану. Лекарственное вещество, имеющее аффинитет к транспортной системе, соединяется с местами связывания этой системы с одной стороны мембраны; затем происходит конформация белковой молекулы и вещество высвобождается с другой стороны мембраны.

Активный транспорт избирателен, насыщаем, требует затрат энергии, может происходить против градиента концентрации.

Облегченная диффузия - перенос вещества через мембраны специальными транспортными системами по градиенту концентрации без затрат энергии.

Пиноцитоз - впячивания клеточной мембраны, окружающие молекулы вещества и образующие вакуоли, которые проникают через клетку и высвобождают вещество с другой стороны клетки.

1. Всасывание (абсорбция)

При большинстве путей введения лекарственные вещества, прежде чем они попадут в кровь, проходят процесс всасывания.

Различают энтеральные (через пищеварительный тракт) и парентеральные (помимо пищеварительного тракта) пути введения лекарственных веществ.

Энтеральные пути введения - введение веществ под язык, внутрь, ректально. При этих путях введения вещества всасываются в основном путем пассивной диффузии. Поэтому хорошо всасываются липофильные неполярные вещества и плохо - гидрофильные полярные соединения.

При введении веществ под язык (сублингвально) всасывание происходит быстро и вещества попадают в кровь, минуя печень. Однако всасывающая поверхность невелика и таким путем можно вводить только высокоактивные вещества, назначаемые в малых дозах. Например, сублингвально применяют таблетки нитроглицерина, содержащие 0,0005г нитроглицерина; действие наступает через 1-2 мин.

При назначении веществ внутрь (peros ) лекарственные средства (таблетки, драже, микстуры и др.) проглатывают; всасывание веществ происходит в основном в тонком кишечнике.

Из тонкого кишечника вещества через систему воротной вены попадают в печень и только затем - в общий кровоток. В печени многие вещества подвергаются превращениям (биотрансформация); некоторые вещества выделяются из печени с желчью. В связи с этим в кровь может попасть лишь часть вводимого вещества; остальная часть подвергаетсяэлиминации при первом прохождении (пассаже) через печень.

Лекарственные вещества могут неполностью всасываться в кишечнике, подвергаться метаболизму в стенке кишечника. Поэтому часто используют более общий термин -«пресистемная элиминация».

Количество неизмененного вещества, попавшего в общий кровоток, в процентном отношении к введенному количеству обозначают термином«биодоступность». Например, биодоступность про-пранолола 30%. Это означает, что при приеме внутрь в дозе 0,01г (10мг) только 0,003г (3мг) неизмененного пропранолола попадает в кровь.

Для определения биодоступности лекарственное вещество вводят в вену (при внутривенном введении биодоступность вещества - 100%). Через определенные интервалы времени определяют концентрации вещества в плазме крови и строят кривую изменения концентрации вещества во времени. Затем ту же дозу вещества назначают внутрь, определяют концентрации вещества в крови и строят кривую концентрация-время (рис. 1).

Измеряют площади под кривыми - AUC (AreaUndertheCurve ). Биодоступность - F (Fraction ) определяют как отношение AUC при назначении внутрь к AUC при внутривенном введении и обозначают в процентах

При одинаковой биодоступности двух веществ скорость их поступления в общий кровоток может быть различной. Соответственно различными будут время достижения пиковой концентрации, максимальная концентрация в плазме крови, величина фармакологического эффекта. В связи с этим вводят понятие «биоэквивалентность». Биоэквивалентность двух веществ означает сходные биодоступность, пик действия, характер и величину фармакологического эффекта.

Некоторые лекарственные средства вводят ректально (в прямую кишку) в виде ректальных суппозиториев (свечей) или лекарственных клизм. При этом 50% вещества после всасывания попадает в кровь, минуя печень.

Время, ч

Рис. 1. Биодоступность лекарственного вещества

Биодоступность (F - Fraction ) определяется как отношение площадей под кривыми

концентрация - время (AUC ) при приеме вещества внутрь и введении внутривенно.

Парентеральные пути введения - введение веществ, минуя пищеварительный тракт. Наиболее употребительные парентеральные пути введения - в вену, под кожу, в мышцы.

При внутривенном введении лекарственное вещество сразу попадает в кровь; действие вещества развивается очень быстро, обычно в течение 1-2мин. Чтобы не создавать в крови слишком высокой концентрации вещества, большинство лекарственных средств перед внутривенным введением разводят в 10-20мл изотонического (0,9%) раствора натрия хлорида или изотонического (5%) раствора глюкозы и вводят медленно - в течение нескольких минут. Нередко лекарственные вещества в 250-500мл изотоническо­го раствора водят в вену капельно, иногда в течение многих часов.

В вену нельзя вводить масляные растворы и взвеси (суспензии) в связи с опасностью закупорки сосудов (эмболии). Однако внутривенно иногда вводят небольшие количества гипертонических растворов (например, 10-20мл 40% раствора глюкозы), которые быстро разводятся кровью.

При внутримышечном введении (чаще всего в мышцы ягодицы) вещества могут всасываться путем пассивной диффузии и путем фильтрации (через межклеточные промежутки в эндотелии кровеносных сосудов). Таким образом, внутримышечно можно вводить и липофильные неполярные, и гидрофильные полярные соединения.

В мышцы нельзя вводить гипертонические растворы и раздражающие вещества. В то же время, в мышцы вводят масляные растворы и взвеси (суспензии). При введении взвеси в мышце создается депо препарата, из которого лекарственное вещество может медленно и длительно всасываться в кровь.

При подкожном введении (в подкожную жировую клетчатку) вещества всасываются так же, как и при внутримышечном введении, но более медленно, так как кровоснабжение подкожной клетчатки меньше, чем кровоснабжение скелетных мышц. Под кожу иногда вводят масляные растворы и взвеси. Однако по сравнению с введением в мышцы масляные растворы и взвеси медленнее всасываются и могут образовывать инфильтраты.

Из других путей введения лекарственных средств в клинической практике используют ингаляционное введение (вдыхание газообразных веществ, паров летучих жидкостей, аэрозолей), введение веществ под оболочки мозга, внутриартериальное введение и некоторые другие.

2. Распределение

При попадании в общий кровоток липофильные неполярные вещества распределяются в организме относительно равномерно, а гидрофильные полярные вещества - неравномерно, Препятствиями для распределения гидрофильных полярных веществ являются, в частности,гистогемагпические барьеры, т.е. барьеры, отделяющие некоторые ткани от крови. К таким барьерам относятся гематоэнцефалический, гематоофтальмический и плацентарный барьеры.

Гематоэнцефалический барьер образован слоем эндотелиальных клеток капилляров мозга, в котором отсутствуют межклеточные промежутки. Гематоэнцефалический барьер препятствует проникновению гидрофильных полярных веществ из крови в ткани мозга. При воспалении мозговых оболочек проницаемость гематоэнцефалического барьера повышается.

Гематоофтальмический барьер препятствует проникновению гидрофильных полярных веществ из крови в ткани глаз.

Плацентарный барьер во время беременности препятствует проникновению ряда веществ из организма матери в организм плода.

Для характеристики распределения лекарственного вещества используюткажущийся объем распределения - V d (Volumeofdistribution ).

В системе однокамерной фармакокинетической модели ,

где D - доза, С о - начальная концентрация. Поэтому кажущийся объем распределения можно определить как гипотетический объем жидкостей организма, в котором после внутривенного введения, при условии мгновенного и равномерного распределения концентрация вещества равна его концентрации в плазме крови. V d определяют в литрах или л/кг.

Если для условного человека с массой тела 70 кг V d =3л (объем плазмы крови), это означает, что вещество находится в плазме крови, не проникает в форменные элементы крови и не выходит за пределы кровеносного русла.

V d =15л означает, что вещество находится в плазме крови (3л), в межклеточной жидкости (12л) и не проникает в клетки тканей.

V d =40л (общее количество жидкости в организме) означает, что вещество распределено во внеклеточной и внутриклеточной жидкости.

V d =400-600-1000л означает, что вещество депонировано в периферических тканях и его концентрация в крови низкая. Например, для имипрамина (трициклический антидепрессант) V d =23л/кг, т.е. примерно 1600л. В связи с этим концентрация имипрамина в крови очень низкая и при отравлении имипрамином гемодиализ не эффективен.

3. Депонирование

При распределении лекарственного вещества в организме часть вещества может задерживаться (депонироваться) в различных тканях. Из «депо» вещество высвобождается в кровь и оказывает фармакологическое действие. Липофильные вещества могут депонироваться в жировой ткани. Так, средство для внутривенного наркоза тиопентал-натрий вызывает наркоз, который продолжается 15-20мин. Кратковременность действия связана с тем, что 90% тиопентала-натрия депонируется в жировой ткани. После прекращения наркоза наступает посленаркозный сон, который продолжается 2-3ч и связан с действием препарата, высвобождаемого из жирового депо.

Антибиотики из группы тетрациклинов на длительное время депонируются в костной ткани. Тетрациклины не рекомендуют назначать детям до 8 лет, так как, депонируясь в костной ткани, они могут нарушать развитие скелета.

Многие вещества депонируются в крови, связываясь с белками плазмы крови. В соединении с белками плазмы вещества не проявляют фармакологической активности. Однако часть вещества выс­вобождается из связи с белками и оказывает фармакологическое действие. Вещества, которые более прочно связываются с белками, могут вытеснять вещества с меньшей прочностью связывания. Действие вытесненного вещества при этом усиливается, так как увеличивается концентрация в плазме крови его свободной (активной) формы. Например, сульфаниламиды, салицилаты могут таким образом усиливать действие назначаемых одновременно непрямых антикоагулянтов. При этом свертываемость крови может чрезмерно снижаться, что ведет к кровотечениям.

4. Биотрансформация

Большинство лекарственных веществ в организме подвергается превращениям (биотрансформации). Различаютметаболическую трансформацию (окисление, восстановление, гидролиз) иконъюгацию (ацетилирование, метилирование, образование соединений с глюкуроновой кислотой и др.). Соответственно, продукты превращений называют метаболитами и конъюгатами. Обычно вещество подвергается сначала метаболической трансформации, а затем конъюгации. Метаболиты, как правило, менее активны, чем исходные соединения, но иногда оказываются активнее (токсичнее) исходных веществ. Конъюгаты обычно малоактивны.

Большинство лекарственных веществ подвергается биотрансформации в печени под влиянием ферментов, локализованных в эндоплазматическом ретикулуме клеток печени и называемыхмикросомальными ферментами (в основном изоферменты цитохрома Р-450).

Эти ферменты действуют на липофильные неполярные вещества, превращая их в гидрофильные полярные соединения, которые легче выводятся из организма. Активность микросомальных ферментов зависит от пола, возраста, заболеваний печени, действия некоторых лекарственных средств.

Так, у мужчин активность микросомальных ферментов несколько выше, чем у женщин (синтез этих ферментов стимулируется мужскими половыми гормонами). Поэтому мужчины более устойчивы к действию многих фармакологических веществ.

У новорожденных система микросомальных ферментов несовершенна, поэтому ряд лекарственных веществ (например, хлорамфеникол) в первые недели жизни назначать не рекомендуют в связи с их выраженным токсическим действием.

Активность микросомальных ферментов печени снижается в пожилом возрасте, поэтому многие лекарственные препараты лицам старше 60 лет назначают в меньших дозах по сравнению с ли­цами среднего возраста.

При заболеваниях печени активность микросомальных ферментов может снижаться, замедляется биотрансформация лекарственных средств, усиливается и удлиняется их действие.

Известны лекарственные вещества, индуцирующие синтез микросомальных ферментов печени, например, фенобарбитал, гризеофульвин, рифампицин. Индукция синтеза микросомальных ферментов при применении указанных лекарственных веществ развивается постепенно (примерно в течение 2 нед). При одновременном назначении с ними других препаратов (например, глюкокортикоидов, противозачаточных средств для приема внутрь) действие последних может ослабляться.

Некоторые лекарственные вещества (циметидин, хлорамфеникол и др.) снижают активность микросомальных ферментов печени и поэтому могут усиливать действие других препаратов.

5. Выведение (экскреция)

Большинство лекарственных веществ выводится из организма через почки в неизмененном виде или в виде продуктов биотрансформации. В почечные канальцы вещества могут поступать при фильтрации плазмы крови в почечных клубочках. Многие вещества секретируются в просвет проксимальных канальцев. Транспортные системы, которые обеспечивают эту секрецию, малоспецифичны, поэтому разные вещества могут конкурировать за связывание с транспортными системами. При этом одно вещество может задерживать секрецию другого вещества и таким образом задерживать его выведение из организма. Например, хинидин замедляет секрецию дигоксина, концентрация дигоксина в плазме крови повышается, возможно проявление токсического действия дигоксина (аритмии и др.).

Липофильные неполярные вещества в канальцах подвергаются обратному всасыванию (реабсорбции) путем пассивной диффузии. Гидрофильные полярные соединения мало реабсорбируются и вы­водятся почками.

Выведение (экскреция) слабых электролитов прямо пропорционально степени их ионизации (ионизированные соединения мало реабсорбируются). Поэтому для ускоренного выведения кислых соединений (например, производных барбитуровой кислоты, салицилатов) реакцию мочи следует изменять в щелочную сторону, а для выведения оснований - в кислую.

Кроме того, лекарственные вещества могут выделяться через желудочно-кишечный тракт (выделение с желчью), с секретами потовых, слюнных, бронхиальных и других желез. Летучие лекарственные вещества выделяются из организма через легкие с выдыхаемым воздухом.

У женщин в период кормления грудью лекарственные вещества могут выделяться молочными железами и с молоком попадать в организм ребенка. Поэтому кормящим матерям не следует назначать лекарства, которые могут неблагоприятно воздействовать на ребенка.

Биотрансформация и экскреция лекарственных веществ объединяются термином«элиминация». Для характеристики элиминации используют константу элиминации - к е1 (к е) и период полуэлиминации - t 1/2 .

Константа элиминации показывает, какая часть вещества элиминируется в единицу времени. Например, внутривенно введено вещество А в дозе 10 мг; к е1 =0,1/ч. Через 1 ч в плазме крови останется 9 мг, через 2 ч - 8,1мг.

Период полуэлиминации - t 1/2 - время, за которое концентрация вещества в плазме крови снижается наполовину. В основное время элиминации t 1/2 не зависит от дозы вещества и одинаков в разное


Общий (total ) клиренс определяется по формуле Cl t = V d * k e [ .

Другими словами, Cl t показывает, какая часть объема распределения освобождается от вещества в единицу времени.

Для оптимального терапевтического эффекта и для предупреждения токсического действия необходимо поддерживать в плазме крови постоянную (стационарную) терапевтическую концентрацию лекарственного вещества. Стационарную концентрацию обозначают как C ss (steady - stateconcentration ). В справочниках и руководствах по фармакологии приводят значения средних терапевтичес­ких концентраций для наиболее употребительных лекарственных веществ.

Определяют также минимальную терапевтическую концентрацию (минимальную эффективную концентрацию) - C ss min и максимальную терапевтическую концентрацию (максимальную безопасную концентрацию) - C ss max , выше которой концентрации становятся токсическими. Интервал между C ss min и C ss max соответствуеттерапевтической широте (рис.2). Чем больше терапевтическая широта лекарственного средства, тем легче его использовать в практической медицине. Наоборот, при малой терапевтической широте увеличивается вероятность попадания в зону токсических концентраций.

Для поддержания средней терапевтической концентрации лекарственного вещества можно вводить раствор этого вещества внутривенно капельно. При этом концентрация вещества в плазме крови сначала повышается быстро, затем медленнее и, наконец, устанавливается стационарная концентрация, при которой скорость введения вещества равна скорости его элиминации (биотрансформация+экскреция). Скорость введения определяют по формуле


Однако значительно чаще лекарственные вещества назначают внутрь или в виде отдельных инъекций. В этих случаях целесообразно сначала вводитьнагрузочную дозу для быстрого достижения терапевтической концентрации, а затем назначать малые дозы, которые поддерживают терапевтическую концентрацию, - ..

В фармакокинетике лекарственных препаратов выделяют четыре основных этапа. Рассмотрим их поподробнее.

1 этап - всасывание. Всасывание - это процесс проникновения лекарст­венного вещества через неповрежденные ткани организма в кровоток. Происхо­дит со всех поверхностей человеческого тела, но особенно интенсивно из желу­дочно-кишечного тракта, из легких, с поверхности слизистых оболочек.

В основе всасывания лежат следующие основные механизмы:

1. Пассивная диффузия молекул, которая идет в основном по градиенту концен­трации. Этот механизм лежит в основе всасывания подавляющего большинства лекарственных препаратов, молекулы которых являются электронейтральными. Интенсивность и полнота всасывания этим механизмом прямо пропорциональны липофильности, то есть жирорастворимое вещества, - чем больше липофильность, тем выше способность вещества всасываться (барбитураты, салицилаты,
спирты).

2. Фильтрация через поры клеточных мембран. Этот механизм может быть задействован только при всасывании низкомолекулярных соединений, размер которых не превышает размер клеточных пор (вода, многие катионы). Зависит от гидростатического давления.

3. Активный транспорт обычно осуществляется с помощью специальных переносчиков, идет с затратой энергии, не зависит от градиента концентрации, харак­теризуется избирательностью и насыщаемостью (водорастворимые витамины, аминокислоты).

4. Пиноцитоз характерен лишь для высокомолекулярных соединений (полимеров, полипептидов). Происходит с образованием и прохождением везикул через клеточные мембраны.

Всасывание лекарственных веществ может осуществляться этими механиз­мами при различных путях введения (энтеральных и парентеральных), кроме внутривенного, при котором препарат сразу поступает в кровоток. Кроме того, перечисленные механизмы участвуют в распределении и выведении лекарств.

2 этап - распределение. Этот процесс зависит от сродства лекарства различным органам и тканям. Кроме того, в организме есть определенные барьеры, регулирующие проникновение веществ в органы и ткани. Особенно важными являются гематоэнцефалический (ГЭБ) и гематоплацентарный (ГПБ) барьеры. Многие заряженные молекулы не действуют на ЦНС вследствие того, что не могут пройти ГЭБ. Во время беременности лекарственные препараты,
принимаемые женщиной, могут проникать через ГПБ и оказать губительное или токсическое влияние на плод, то есть проявляется эмбриотоксическое или терато­генное действие. Широкую известность получила трагедия с препаратом талидомид. Он был внедрен в клинику как средство устранения нервного напряжения у беременных. На женщин он оказал прекрасное седативное действие, однако в последующем у них стали рождаться дети с чудовищными уродствами - ластообразными конечностями, серьезными дефектами лицевого и мозгового черепа. На распределение лекарственных веществ также влияет их способность связываться с белками крови, что обеспечивает задержку эффекта (латентный период) и де­понирование (кумуляция).

Для некоторых препаратов характерно также перераспределение. Эти ле­карственные препараты, вначале накапливаясь в одной ткани, в последующем перемещаются в другой орган, являющийся мишенью для них. Например, сред­ство для неингаляционного наркоза тиопентал натрия вследствие своей высокой липофильности накапливается в жировой ткани и лишь потом начинает прони­кать в ЦНС и оказывать свое наркотическое действие.

3 этап - метаболизм (превращение). Это процесс, при котором активное лекарственное вещество подвергается превращениям и становится, как правило, биологически неактивным. Этот процесс идет во многих тканях, но в наибольшей степени - в печени. Существуют два основных пути метаболизма лекарственных веществ в печени:

ü биотрансформация (реакции метаболизма 1-й фазы), происходит под дей­ствием ферментов - окисление, восстановление, гидролиз.

ü конъюгация (реакции метаболизма 2-й фазы), при которой происходит присоединение к молекуле вещества остатков других молекул (глюкуроновой, серной кислот, алкильных радикалов), с образованием неактивного комплекса, легко выводимого из организма с мочой или калом.

Следует помнить, что в ряде случаев лекарственный препарат становится активным лишь после реакций метаболизма в организме, то есть он является пролекарством, превращающимся в лекарство только в организме. Например, ингибитор ангиотензинпревращающего фермента эналаприл приобретает свою активность лишь после метаболизма в печени и образования из него активного соединения эналаприлата.

4 этап - выведение. Основным органом выведения являются почки, од­нако лекарства могут выводиться и кишечником, легкими, потовыми и молоч­ными железами. Способ выведения необходимо знать, чтобы правильно дозировать препарат при, например, заболеваниях почек или печени, для правильного лечения отравлений. Кроме того, знание способа выведения может повысить эффективность проводимой терапии. Например, антимикробное средство уросульфан выводится в неизменном виде почками, поэтому его назначают при ин­фекциях мочевыводящих путей, антибиотик тетрациклин выводится желчью, поэтому именно его назначают при инфекциях желчевыводящих путей; при бронхитах назначают камфару, которая, выделяясь легкими, разжижает мокроту и облегчает ее отхаркивание.

Элиминация - это сумма всех процессов, связанных с метаболизмом и вы­ведением лекарственного препарата, то есть прекращением его действия. Сте­пень элиминации характеризуется периодом полужизни лекарственного вещества - это интервал времени, в течение которого концентрация активного лекарствен­ного вещества в крови снижается в два раза. Период полужизни может варьиро­вать в очень большом интервале времени, например, у пенициллина он 28 минут, а у витамина Д - 30 дней.

Виды действия лекарственных веществ

В зависимости от целей, путей и обстоятельств использования лекарствен­ных препаратов могут быть выделены различные виды действия в соответствии с различными критериями.

1. В зависимости от локализации действия препарата выделяют:

а) местное действие - проявляется на месте нанесения препарата. Часто ис­пользуется для лечения заболеваний кожи, ротоносоглотки, глаз. Местное дейст­вие может иметь разный характер - противомикробное при локальной инфекции, местноанестезирующее, противовоспалительное, вяжущее и др. Важно запом­нить, что основной лечебной характеристикой лекарства, назначаемого местно, является концентрация действующего вещества в нем. При использовании мест­ного действия лекарств важно минимализировать его всасывание в кровь. Для этой цели, например, в растворы местных анестетиков добавляют адреналина гидрохлорид, который, суживая сосуды и, тем самым, уменьшая всасывание в
кровь, снижает отрицательное действие анестетика на организм и повышает дли­тельность его действия.

б) резорбтивное действие - проявляется после всасывания лекарства в кровь и более или менее равномерного распределения в организме. Основной лечебной характеристикой лекарства, действующего резорбтивно, является доза. Доза - это количество лекарственного вещества, вводимого в организм для про­явления резорбтивного действия. Дозы могут быть разовыми, суточными, курсо­выми, терапевтическими, токсическими и др. Напомним, что, выписывая рецепт, мы всегда ориентируемся на средние терапевтические дозы препарата, которые
всегда можно найти в справочниках.

2. Когда лекарство попадает в организм, с ним контактируют большое ко­личество клеток и тканей, которые могут по-разному реагировать на это лекарство. В зависимости от сродства определенным тканям и по степени избирательно­сти выделяют следующие виды действия:

а) избирательное действие - лекарственное вещество действует избира­тельно только на один орган или систему, совсем не затрагивая другие ткани. Это идеальный случай действия лекарств, который на практике встречается очень редко.

б) преимущественное действие - действует на несколько органов или систем, но имеется определенное предпочтение одному из органов или тканей. Это наиболее часто встречающийся вариант действия лекарств. Слабая избиратель­ность лекарств лежит в основе их побочных эффектов.

в) общеклеточное действие - лекарственное вещество действует в равной степени на все органы и системы, на любую живую клетку. Препараты подобного действия назначаются, как правило, местно. Примером такого действия является прижигающий эффект солей тяжелых металлов, кислот.

3. Под действием лекарственного препарата функция органа или ткани мо­жет изменяться по-разному, поэтому по характеру изменения функции можно выделить следующие виды действия:

а) тонизирующее - действие лекарственного вещества начинается на фоне сниженной функции, а под действием препарата она повышается, приходя к нор­мальному уровню. Примером такого действия является стимулирующий эффект холиномиметиков при атонии кишечника, которая довольно часто возникает в послеоперационном периоде при операциях на органах брюшной полости.

б) возбуждающее - действие лекарственного вещества начинается на фоне нормальной функции и приводит к усилению функции этого органа или системы. Примером служит действие солевых слабительных веществ, используемых часто для очищения кишечника перед операцией на органах брюшной полости.

в) седативное (успокаивающее) действие - лекарственный препарат снижа­ет чрезмерно повышенную функцию и приводит к ее нормализации. Часто используется в неврологической и психиатрической практике, есть особая группа препаратов, которая называется "седативные средства".

г) угнетающее действие - лекарство начинает действовать на фоне нор­мальной функции и приводит к снижению ее активности. Например, снотворные средства ослабляют функциональную активность ЦНС и позволяют пациенту быстрее заснуть.

д) паралитическое действие - лекарство приводит к глубокому угнетению функции органа вплоть до полного прекращения. Примером является действие средств для наркоза, которые приводят к временному параличу многих отделов ЦНС, кроме нескольких жизненно важных центров.

4. В зависимости от способа возникновения фармакологического эффекта лекарственного препарата выделяют:

а) прямое действие - результат непосредственного влияния лекарства на тот, орган, функцию которого он изменяет. Примером является действие сердечных гликозидов, которые, фиксируясь в клетках миокарда, оказывают влияние на обменные процессы в сердце, что приводит к терапевтическому эффекту при сердечной недостаточности.

б) косвенное действие - лекарственное вещество оказывает влияние на оп­ределенный орган, в результате чего опосредованно, косвенно изменяется и функция другого органа. Например, сердечные гликозиды, оказывая прямое дей­ствие на сердце, косвенно облегчают дыхательную функцию за счет снятия за­стойных явлений, увеличивают диурез за счет интенсификации почечного крово­обращения, в результате чего исчезают одышка, отеки, цианоз.

в) рефлекторное действие - лекарственный препарат, действуя на опреде­ленные рецепторы, запускает рефлекс, изменяющий функцию органа или систе­мы. Примером является действие нашатырного спирта, который при обморочных состояниях, раздражая обонятельные рецепторы, рефлекторно приводит к стиму­ляции дыхательного и сосудодвигательного центров в ЦНС и восстановлению сознания. Горчичники ускоряют разрешение воспалительного процесса в легких
за счет того, что эфирные горчичные масла, раздражая рецепторы кожи, запус­кают систему рефлекторных реакций, приводящих к усилению кровообращения в легких.

5. В зависимости от звена патологического процесса, на который действует лекарство, выделяют следующие виды действия, которые еще называют видами лекарственной терапии:

а) этиотропная терапия - лекарственное вещество действует непосредст­венно на причину, вызвавшую заболевание. Типичный пример - действие анти­микробных средств при инфекционных заболеваниях. Это, казалось бы, идеаль­ный случай, однако это не совсем так. Довольно часто непосредственная причина заболевания, оказав свое действие, утратила актуальность, поскольку запустились процессы, течение которых уже не контролируется причиной заболевания. На­пример, после острого нарушения коронарного кровообращения, необходимо не столько ликвидировать его причину (тромб или атеросклеротическая бляшка),
сколько нормализовать обменные процессы в миокарде и восстановить насосную функцию сердца. Поэтому в практической медицине чаще используется.

б) патогенетическая терапия - лекарственное вещество влияет на патоге­нез заболевания. Это действие может быть достаточно глубоким, приводящим к излечению больного. Примером является действие сердечных гликозидов, кото­рые не влияют на причину, вызвавшую сердечную недостаточность (кардиодистрофия), но нормализуют обменные процессы в сердце таким образом, что сим­птомы сердечной недостаточности постепенно исчезают. Вариантом патогенетической терапии является заместительная терапия, например, при сахарном диабете назначается инсулин, который восполняет недостаток собственного гор­мона.

в) симптоматическая терапия - лекарственное вещество влияет на опреде­ленные симптомы заболевания, часто не оказывая решающего влияния на течение заболевания. Примером является противокашлевое и жаропонижающее дей­ствие, снятие головной или зубной боли. Однако симптоматическая терапия мо­жет стать и патогенетической. Например, снятие сильной боли при обширных травмах или ожогах предупреждает развитие болевого шока, снятие чрезвычайно высокого артериального давления предупреждает возможность возникновения инфаркта миокарда или инсульта.

6. С клинической точки зрения выделяют:

а) желательное действие - главный лечебный эффект, на который рассчи­тывает врач, назначая определенное лекарственное средство. К сожалению, од­новременно с ним, как правило, возникает

б) побочное действие - это действие лекарства, которое проявляется одно­временно с желательным действием при назначении его в терапевтических дозах.
Является следствием слабой избирательности действия лекарств. Например, про­тивоопухолевые средства создаются так, чтобы они активнее всего влияли на интенсивно размножающиеся клетки. При этом, действуя на опухолевый рост, они также влияют на интенсивно размножающиеся половые клетки и клетки крови, в результате чего угнетается кроветворение и созревание половых клеток.

7. По глубине воздействия лекарства на органы и ткани выделяют:

а) обратимое действие - функция органа под действием лекарства меняется временно, восстанавливаясь при отмене препарата. Большинство лекарств дейст­вуют именно так.

б) необратимое действие - более прочное взаимодействие лекарства и био­логического субстрата. Примером может быть угнетающее действие фосфорорганических соединений на активность холинэстеразы, связанное с образованием очень прочного комплекса. В результате этого активность фермента восстанав­ливается лишь за счет синтеза новых молекул холинэстеразы в печени.

Способы введения лекарств в организм

Все способы введения лекарств в организм принято разделять на две боль­шие группы - энтеральные, то есть через желудочно-кишечный тракт, и паренте­ральные, то есть минуя его. Этим самым подчеркивается важнейшая роль ЖКТ как основной системы проникновения лекарств в организм.

1. Выделяют следующие энтеральные способы введения лекарств:

а) пероральное введение - прием лекарства через рот в желудок. Самый удобный и простой, поэтому наиболее часто используемый метод. Эффект пре­парата, введенного внутрь, развивается через 20-40 минут, в зависимости от со­держимого желудка, липофильности лекарства, характера растворителя. Эффект спиртовых растворов препаратов наступает примерно в два раза быстрее, чем водных. Необходимо помнить, что все лекарства, введенные через рот, прежде чем попасть в системный кровоток, проходят через печень, где определенная часть их мегаболизируется и теряет свою активность (пресистемная элиминация). Характеристикой этого процесса является биодоступность - то есть отношение количества лекарства, находящегося в крови, к общему количеству лекарства, введенного в организм.

б) сублингвальное введение - нанесение лекарства под язык. Подъязычная область чрезвычайно интенсивно кровоснабжается, имеет множество поверхно­стно расположенных капилляров, поэтому обладает высокой всасывательной способностью. Пресистемной элиминации лекарства при этом способе введения не происходит. Этот метод используется при экстренной терапии - например, нитроглицерин, принятый под язык, начинает оказывать свое действие уже через 1-2 минуты.

в) ректальное введение - введение лекарств через прямую кишку в виде ле­карственных клизм или свеч. Достоинством этого метода является то, что всасы­вающиеся лекарства в основном минуют печеночный барьер и сразу поступают в кровоток. То есть биодоступность лекарств при этом пути введения выше, чем при пероральном.

2. Наиболее распространенными парентеральными путями введения ле­карственных препаратов являются следующие:

а) инъекции - введение стерильных лекарственных препаратов с нарушени­ем целостности кожного покрова. Виды инъекций:

Подкожные - лекарства, не обладающие местнораздражающим действием,
объем - 1-2 мл. Эффект наступает через 10-20 минут.

Внутримышечные - объем - 1-5 мл. Эффект наступает через 5-10 минут.

Внутривенные - используются для экстренной и интенсивной терапии. Объем - 10-20 мл, можно и больше, тогда это называется инфузии. Лекарства должныбыть изотоничны с кровью или разводиться изотоническими растворами, нельзя масляные растворы и эмульсии. Этот метод требует определенного умения, при невозможности введения этим методом можно вводить в уздечку языка – эффект будет тот же.

Внутриартериальные - требуют специальной подготовки врача. Иногда ис­пользуется для терапии локальных опухолей - введение лекарства в артерию, питающую опухоль.

Другие - внутриполостные, внутрикостные, внутрисуставные, в спинномозго­вой канал и проч. Используются по особым показаниям.

б) ингаляции - введение лекарственных препаратов через дыхательные пути. Используются газы, летучие жидкости, испарения, мелкодисперсные аэрозоль­ные порошки. Как правило, используются с двумя целями:

Оказать местное лечебное воздействие на дыхательные пути при их заболева­ниях (бронхиты, трахеиты, астма).

Получить хорошо управляемый фармакологический эффект (ингаляционный наркоз).

в) накожные аппликации - могут быть использованы для местного воздей­ствия - мази, пасты, линименты и прочее. В последние десятилетия накопился большой опыт применения накожных аппликаций для резорбтивного действия лекарств. Эти лекарственные формы называются "накожные терапевтические системы". Они представляют собой многослойный пластырь с резервуаром, со­держащим определенное количество лекарственного препарата. Этот пластырь прикрепляется на внутреннюю поверхность плеча, где кожа наиболее тонкая, что обеспечивает постепенное всасывание и стабильную концентрацию препарата в крови. Примером является препарат скоподерм - лекарство от морской болезни, содержащее скополамин. Другим известным примером является никорет - сред­ство, уменьшающее тягу к табакокурению.

Роль рецепторов в действии лекарств

Эффект большинства лекарств на организм есть результат взаимодействия их с определенными макромолекулярными комплексами, которые принято обо­значать понятием рецептор. В большинстве случаев рецепторы для лекарств образуют различные белки, при этом особый интерес представляют те из них, которые в норме являются рецепторами для эндогенных соединений. Вещество, которое специфически соединяется с рецептором, называется лигандом. Препа­рат, который соединяется с физиологическим рецептором и вызывает сходные эффекты с эндогенным лигандом, называется агонистом. Препарат, который, связываясь с рецептором, предупреждает действие лиганда или вызывает проти­воположный эффект, нежели эндогенный лиганд, называется антагонистом. Со­временная теоретическая фармакология уделяет большое внимание исследова­нию качественной и количественной характеристики взаимодействия лекарст­венных препаратов с рецепторами. На основе этих знаний в настоящее время создаются препараты с направленным механизмом действия, влияющие лишь на определенные рецепторы.

Факторы, влияющие на эффект лекарственного препарата

1. Способ введения препарата . Как правило, при парентеральном введении препарата его эффект в большинстве случаев проявится быстрее и будет сильнее выражен, чем при энтеральном введении. Однако различия могут касаться не только количественной характеристики эффекта, но и иногда качественной. На­пример, сульфат магния при введении внутривенно вызывает выраженный гипо­тензивный эффект, а при введении через рот является мощным слабительным средством, не оказывая влияния на АД.

2. Возраст больного . Хорошо известно, что лекарственные препараты име­ют особенности действия на организм детей младшего возраста и пожилых лю­дей. Связано это в основном с тем, что у детей многие системы организма еще не до конца развиты, а у пожилых - начался естественный период угасания функций. Именно поэтому в последние годы сформировались две смежные дисциплины - педиатрическая фармакология и гериатрическая фармакология. В процессе изу­чения фармакологии мы будем касаться некоторых их аспектов.

3. Пол больного . В большинстве случаев, при прочих равных условиях, ле­карства оказывают одинаковое влияние на организм мужчины и женщины. Одна­ко эффекты половых гормонов и некоторых родственных им соединений на ор­ганизм мужчины и женщины отличаются принципиально. Так, например, при опухоли молочной железы у женщин ее собственные (женские) половые гормоны являются стимуляторами роста опухоли, а мужские половые гормоны – тормозят рост опухоли. Поэтому для снижения активности опухолевого роста женщине в подобных случаях часто вводят мужские половые гормоны, и, наоборот, при
опухолях простаты у мужчин им с той же целью вводят женские половые гормо­ны.

4. Индивидуальная чувствительность . Вследствие ряда генетических (врож­денных) или приобретенных в течение жизни особенностей, некоторые люди могут необычным образом реагировать на введение определенного лекарствен­ного препарата. Это может быть связано с отсутствием каких-либо ферментов и рецепторов, играющих важную роль в действии этого препарата. Однако в боль­шинстве случаев это связано с аллергическими проявлениями при повторном введении лекарств, которые могут варьировать от незначительных кожных про­
явлений до угрожающих жизни бронхоспазма, коллапса и шока. Вариантом ин­дивидуальной чувствительности человека является идиосинкразия, при которой на первое в жизни введение лекарственного препарата организм больного отве­чает совершенно необычно, бурно, вплоть до анафилактического шока. Предска­зать такую реакцию бывает невозможно.

5. Особые состояния организма . Периоды полового созревания, беремен­ность, роды, половое угасание являются особыми состояниями организма чело­века, в которые действие некоторых лекарственных препаратов может значи­тельно изменяться. Например, при беременности действие ряда препаратов на организм женщины может ослабляться из-за того, что идет распределение и в организм плода, в том числе метаболизм в его печени. При этом надо учитывать и возможное побочное действие препарата на развивающийся плод.

6. Наличие определенных условий . Некоторые препараты не оказывают своего действия без того, чтобы имелись ряд условий в организме. Например, жаропонижающие средства парацетамол) оказывают свое действие лишь при повышенной температуре, а на нормальную температуру они не влияют. Сердеч­ные гликозиды проявят свое кардиотоническое действие лишь при наличии сер­дечной недостаточности.

7. Режим и диета могут значительно повлиять на действие лекарственного препарата. Обильная и богатая белком пища, как правило, затрудняет всасывание препарата, а значит - снижает скорость наступления и силу проявления эффекта. С другой стороны, растительные жиры и алкоголь значительно ускоряют процесс всасывания в кишечнике. Регулярность питания, правильное чередование труда и отдыха, физические упражнения, свежий воздух приводят организм человека к оптимальному состоянию для наилучшего действия лекарства.

Явления, возникающие при повторном введении лекарства

Чаще всего в лечебной практике лекарственные препараты назначаются многократно в течение определенного времени (курсовое лечение). При этом возможны следующие варианты ответной реакции организма:

1. Фармакологический эффект препарата не изменяется при повторном применении. Наиболее часто встречающийся вариант и наиболее желательный. Все вновь создаваемые в настоящее время лекарственные препараты не должны изменять своего эффекта при повторных введениях.

2. Эффект препарата усиливается при повторном применении. Это может происходить в результате следующих процессов;

а) материальная кумуляция - при повторном введении одного и того же вещества в организме в результате снижения процессов элиминации накапливается лекарственный препарат, т.е. материальный субстрат. В результате материальной кумуляции эффект препарата при повторных введениях его становится все боль­ше и больше и может перерасти из терапевтического действия в токсическое. Примерами лекарственных препаратов, способных кумулироваться материально, являются сердечные гликозиды и непрямые антикоагулянты.

б) функциональная кумуляция - при повторном введении одного и того же вещества накапливается не он сам, а его эффект. Примером такого действия яв­ляется длительное применение этилового спирта при алкоголизме, приводящее к токсическому действию на ЦНС в виде острого психоза, называемого "белая горячка".

3. Ослабление фармакологического эффекта при повторном применении называется привыкание, или толерантность. Привыкание характеризуется посте­пенным ослаблением эффекта при длительном применении лекарственного пре­парата, в результате чего для достижения того же самого эффекта приходится повышать вводимую дозу лекарства. Привыкание может возникнуть в результате интенсификации элиминации препарата (повышение активности печеночных ферментов - характерно для барбитуратов) или при снижении чувствительности рецепторов к нему (уменьшение числа бета-адренорецепторов при длительном применении бета-адреномиметиков). Вариантом этого действия является тахифилаксия - то есть быстрое привыкание, при котором фармакологический эффект
может полностью исчезнуть уже после нескольких последовательных введений. Примером тахифилаксии является эффект непрямого адреномиметика эфедрина. При первом введении эфедрин оказывает хорошее сосудосуживающее действие, а при нескольких последовательных введениях с небольшим интервалом эффект его пропадает. Механизм этого действия связан с тем, что эфедрин оказывает свой эффект за счет выброса из нервных окончаний медиатора норадреналина, а при истощении его запасов исчезает и его эффект.

4. Лекарственная зависимость, или пристрастие. Некоторые химические соединения при повторном введении в организм определенным образом вмеши­ваются в обменные процессы и приводят к тому, что у человека возникает тяга к повторному их приему. Таким эффектом обладают лекарственные препараты с наркотическим типом действия (морфин, кодеин, этанол и др.), а также ряд неле­карственных наркотических средств (героин, кокаин, марихуана). При отмене препарата у человека, у которого возникла лекарственная зависимость к нему, проявляется специфический симптомокомплекс - абстинентный синдром (ломка, похмелье), который доставляет сильный дискомфорт человеку, иногда мучитель­ный, вплоть до угрожающих жизни состояний. Лекарственная зависимость может быть психическая, проявляющаяся в основном в психической сфере, и физиче­ская, проявляющаяся жалобами со стороны внутренних органов. Лекарственные препараты с наркотическим типом действия подлежат особому учету, хранению и отпуску. Лечение наркомании чрезвычайно сложная задача современной меди­цины, и положительные результаты этого лечения, к сожалению, бывают гораздо реже, чем отрицательные.

5. Сенсибилизация. При введении в организм препарата, являющегося ан­тигеном, он стимулирует образование антител к нему, и при повторном введении возникает реакция антиген - антитело с типичными аллергическими проявления­ми. Это характерно в основном для белковых препаратов (инсулин) или крупно­молекулярных соединений (гормоны). Однако такая реакция может быть и на низкомолекулярные соединения, которые становятся полноценными антигенами, соединяясь с белками (альбуминами) крови.

Взаимодействие лекарственных препаратов

В настоящее время монотерапия, то есть терапия только одним каким-либо препаратом, встречается редко. В большинстве случаев больному назначаются два, три и более лекарств одновременно. Связано это бывает либо с тем, что пы­таются повысить эффект одного лекарства другим, либо пытаются уменьшить побочные эффекты препарата другим веществом. При этом препараты могут не оказывать никакого влияния друг на друга, а могут проявлять различные вариан­ты взаимодействия. Эти взаимодействия могут быть фармакодинамическими (влияние на механизм развития фармакологического эффекта) и фармакокинети-ческими (влияние на различные этапы фармакокинетики лекарства). При комби­нированной фармакотерапии возможны следующие варианты взаимодействия лекарств друг с другом:

1. Синергизм - однонаправленное действие лекарств, то есть при совмест­ном применении эффект препаратов повышается. Синергизм может быть сле­дующих двух видов:

а) суммирование - конечный эффект совместного применения препаратов равен сумме эффектов каждого из них в отдельности. Обычно по принципу сум­мирования действуют препараты, имеющие сходный механизм действия, единую точку приложения. Используют этот метод обычно для того, чтобы уменьшить дозу каждого препарата в комбинации с целью уменьшения вероятности появле­ния побочных эффектов.

б) потенцирование - эффект комбинированного применения препаратов значительно больше, чем простая сумма эффектов каждого из них в отдельности. Таким образом действуют обычно препараты, вызывающие один и тот же эффект разными механизмами. Это действие используется, как правило, для получения более выраженного фармакологического эффекта.

2. Антагонизм - противоположное действие лекарств, при совместном применении эффект какого-либо препарата из комбинации снижается. Очень часто используется для предупреждения или исключения побочных эффектов лекарства или при лекарственных и нелекарственных отравлениях. Возможными вариантами антагонизма являются:

а) физико-химический антагонизм - взаимодействие лекарств происходит на уровне физического или химического взаимодействия и может происходить независимо от живого организма. Примером физического взаимодействия ле­карств является процесс адсорбции крупномолекулярных токсинов, попавших в желудок, на молекулах активированного угля, вместе с которым они и выводятся затем из организма. Примером химического взаимодействия является лечение растворами слабой кислоты при отравлении щелочами или, наоборот, раствора­ми слабых щелочей при отравлении кислотами (реакция нейтрализации).

б) физиологический - этот вариант антагонизма может происходить только в организме в результате воздействия препаратов на определенные функции. Раз­личают следующие варианты физиологического антагонизма:

По точке приложения выделяют

ü прямой антагонизм - два вещества действуют противоположно на одну и ту же систему, на один и тот же рецептор, место действия. Пример: влияние на то­нус гладких мышц кишечника пилокарпина (М-холиномиметик) и атропина (М-холиноблокатор).

ü непрямой антагонизм - два вещества оказывают противоположные эффекты за счет воздействия на разные точки приложения, разные рецепторы, разные системы организма. Пример: влияние на ритм сердечных сокращений адреналина (адреномиметик) и атропина (холиноблокатор). По направленности действия выделяют

ü двухсторонний (конкурентный) антагонизм, в основе конкурентное взаимо­отношение лекарств за одну и ту же точку приложения. Препараты взаимно сни­мают эффекты друг друга при повышении концентрации какого-либо из них возле точки приложения. По этому принципу работают сульфаниламидные пре­параты, которые оказывают свое антибактериальное действие за счет конкурент­ного антагонизма с парааминобензойной кислотой, необходимой микробу для синтеза клеточной стенки.

ü односторонний антагонизм: один из препаратов оказывает более сильное влияние, поэтому способен снимать и предупреждать действие второго, но не наоборот. Атропин является антагонистом пилокарпина, но пилокарпин не явля­ется антагонистом атропина.

По выраженности различают:

ü полный антагонизм, когда все эффекты одного препарата, снимаются или
предупреждаются другим, и... .,

ü частичный антагонизм, когда препарат снимает или предупреждает лишь часть эффектов другого препарата. Например, наркотический анальгетик морфин кроме сильного обезболивающего действия обладает спазмогенным действием на гладкую мускулатуру, что может привести к резкому сужению желче- и мочевыводящих путей. Для предупреждения этого эффекта вместе с морфином вводят атропин, который не влияет на обезболивающее действие морфина, но преду­преждает его спазмогенный эффект.

3. Несовместимость лекарств, то есть нецелесообразность совместного применения данных лекарств, поскольку в результате резко изменяются свойства одного из них или обоих. Несовместимость может быть в результате химическо­го взаимодействия препаратов в одной лекарственной форме (выпадение осадков, образование не всасывающихся комплексов и др.). Несовместимость может быть и биологическая, например, при применении глазной ртутной мази одновременно с препаратами йода последний, выделяясь слизистой конъюнктивы, образует токсическое соединение - двуйодистую ртуть, которая нарушает прозрачность роговой оболочки глаза.

ФАРМАКОЛОГИЯ ПЕРИФЕРИЧЕСКОЙ НЕРВНОЙ СИСТЕМЫ

Периферическая нервная система (ПНС) делится на два больших отдела - на афферентную, или чувствительную, несущую импульсы с периферии в ЦНС, и эфферентную, или двигательную, несущую импульсы из ЦНС на периферию. Каждый из этих отделов ПНС имеет свою особую функцию, которую в обобщен­ном виде можно определить следующим образом. Для афферентной иннервации - это снабжение ЦНС информацией со всех поверхностей и органов тела (кожа, слизистые, кишечник, сердце, скелетные мышцы и т.д.) об их состоянии и функ­ционировании. Для эфферентной иннервации - это управление всеми органами и тканями на основании информации, полученной через афферентные нервы.

В большинстве случаях передача импульса с нервной клетки на другую нервную клетку или эффекторный орган происходит посредством химических посредников - медиаторов. Медиаторы выделяются в определенном количестве в межклеточное пространство и, достигая поверхности другой клетки, вступают во взаимодействие со специфическими белками - рецепторами, возбуждают их, что и обеспечивает контакт. Используя лекарственные препараты, которые усилива­ют или ослабляют действие медиаторов, активируют или блокируют рецепторы, мы можем избирательно влиять на функционирование тех или иных органов или систем.

Фармакокинетика – это раздел фармакологии (греч. pharmakon – лекарство и kinētikos – относящийся к движению), изучающий закономерности абсорбции, распределения, превращения (биотрансформации) и экскреции (элиминации) лекарственных веществ в организме человека и животных.

Абсорбция – всасывание лекарственного препарата. Введенное лекарство переходит из места введения (например, желудочно-кишечный тракт, мышца) в кровь, которая разносит его по организму и доставляет в различные ткани органов и систем. Скорость и полнота всасывания характеризуют биодоступность лекарства (параметр фармакокинетики, показывающий, какая часть лекарства достигла системного кровотока). Естественно, что при внутривенном и внутриартериальном введении лекарственное вещество попадает в кровоток сразу и полностью, и его биодоступность составляет 100%.

При всасывании лекарство должно пройти через клеточные мембраны кожи, слизистых оболочек, стенок капилляров , клеточных и субклеточных структур.

В зависимости от свойств лекарства и барьеров, через которые оно проникает, а также способа введения все механизмы всасывания можно разделить на четыре основных вида: диффузия (проникновение молекул за счет теплового движения), фильтрация (прохождение молекул через поры под действием давления), активный транспорт (перенос с затратами энергии) и осмос , при котором молекула лекарства как бы продавливается через оболочку мембраны. Эти же механизмы транспорта через мембраны участвуют в распределении лекарств в организме, и при их выведении.

Распределение – проникновение лекарственного средства в различные органы, ткани и жидкости организма. От распределения лекарства в организме зависит скорость наступления фармакологического эффекта, его интенсивность и продолжительность. Для того чтобы начать действовать, лекарственное вещество должно сконцентрироваться в нужном месте в достаточном количестве и оставаться там длительное время.

В большинстве случаев лекарство распределяется в организме неравномерно, в различных тканях его концентрации отличаются в 10 и более раз. Неравномерное распределение лекарственного препарата в тканях обусловлено различиями в проницаемости биологических барьеров, интенсивности кровоснабжения тканей и органов. Клеточные мембраны – главное препятствие на пути молекул лекарственного вещества к месту действия. Различные ткани человека обладают набором мембран с различной “пропускной способностью”. Легче всего преодолеваются стенки капилляров, самые труднопреодолимые барьеры между кровью и тканями мозга – гематоэнцефалический барьер и между кровью матери и плода – плацентарный барьер .


В сосудистом русле лекарственное вещество в большей или меньшей степени связывается с белками плазмы. Комплексы “белок + лекарство” не способны “протиснуться” сквозь стенку капилляра. Как правило, связывание с белками плазмы крови носит обратимый характер и ведет к замедлению наступления эффекта и увеличению продолжительности действия лекарств.

Неравномерность распределения лекарства в организме часто вызывает побочные действия. Необходимо научиться управлять распределением лекарств в человеческом организме. Находить лекарственные вещества, способные избирательно накапливаться в определенных тканях. Создавать лекарственные формы, высвобождающие лекарство там, где необходимо его действие.

Метаболизм – биотрансформация лекарственного средства с образованием одного или нескольких метаболитов.

Часть лекарственных средств действует в организме и выводится в неизмененном виде, а часть подвергается в организме биотрансформации. В биотрансформации лекарственных веществ в организме человека и животных принимают участие различные органы и ткани – печень, легкие, кожа, почки, плацента. Наиболее активно процессы биотрансформации лекарственных средств протекают в печени, что связано с выполнением этим органом детоксикационной, барьерной и экскреторной функций.

Можно выделить два основных направления биотрансформации лекарственных веществ – метаболическую трансформацию и конъюгацию.

Под метаболической трансформацией понимают окисление, восстановление или гидролиз поступившего лекарственного вещества микросомальными оксидазами печени либо других органов.

Под конъюгацией понимают биохимический процесс, сопровождающийся присоединением к лекарственному веществу или его метаболитам различного рода химических группировок или молекул эндогенных соединений.

При описанных процессах лекарственные средства, поступающие в организм, превращаются в более водорастворимые соединения. Это, с одной стороны, может привести к изменению активности, а с другой к выведению этих веществ из организма.

В результате метаболической трансформации и конъюгации лекарственные средства обычно изменяются, либо же совсем лишаются своей фармакологической активности.

Метаболизм или биотрансформация лекарственного препарата часто приводит к превращению жирорастворимых веществ в полярные и наконец, водорастворимые. Эти метаболиты в меньшей степени биологически активны, а биотрансформация облегчает их экскрецию с мочой или желчью.

Экскреция – выведение лекарств из организма после того, как они частично или полностью превращаются в водорастворимые метаболиты (некоторые препараты экскретируются в неизмененном виде); экскреция лекарств осуществляется с мочой, желчью, выдыхаемым воздухом, потом, молоком, калом, со слюной.

Экскреция лекарств кишечная – выведение лекарств сначала с желчью, а затем с калом.

Экскреция лекарств легочная – выведение лекарств через легкие, преимущественно средств для ингаляционного наркоза.

Экскреция лекарств почечная – основной путь экскреции лекарств; зависит от величины почечного клиренса, концентрации лекарства в крови, степени связывания препарата с белками.

Экскреция лекарств с грудным молоком – выделение лекарств во время лактации с молоком (снотворные, анальгетики, фенилин, амиодорон, ацетилсалициловая кислота, соталол, этиловый спирт).

Большинство лекарственных веществ или растворимых в воде метаболитов жирорастворимых веществ выделяются почками. Водорастворимые вещества, находящиеся в крови, могут выделяться с мочой путем пассивной клубочковой фильтрации, активной канальцевой секреции или путем блокады активной, или чаще пассивной канальцевой реабсорбции.

Фильтрация – основной механизм экскреции почками лекарств, не связанных с белками плазмы крови. В связи с этим в фармакокинетике элиминирующую функцию почек оценивают по скорости именно этого процесса.

Фильтрация лекарств в клубочках осуществляется пассивно. Молекулярная масса веществ не должна быть больше 5-10 тыс, они не должны быть связаны с белками плазмы крови.

Секреция – процесс активный (с затратой энергии при участии специальных транспортных систем), не зависящий от связывания препаратов с белками плазмы крови. Реабсорбция глюкозы, аминокислот, катионов и анионов происходит активно, а жирорастворимых веществ - пассивно.

Способность почек к выведению лекарств путем фильтрации проверяется по экскреции эндогенного креатинина, так как оба процесса происходят параллельно с одинаковой скоростью.

При почечной недостаточности корректировку режима дозирования осуществляют с помощью расчета клиренса эндогенного креатинина (С/кр). Клиренс – это гипотетический объем плазмы крови, который полностью очищается от лекарственного средства за единицу времени. В норме клиренс эндогенного креатинина составляет 80-120 мл/мин. Кроме того, для определения клиренса эндогенного креатинина существуют специальные номограммы. Они составлены с учетом уровня креатинина в сыворотке крови, массы тела и роста больного.

Количественно элиминацию ксенобиотика можно оценить и с помощью коэффициента элиминации. Он отражает ту часть (в процентах) лекарственного вещества, на которую происходит уменьшение его концентрации в организме в единицу времени (чаще за сутки).

Связь между объемом распределения и клиренсом вещества выражается периодом полувыведения (T1/2). Период полувыведения вещества – это время, за которое концентрация его в плазме крови снижается наполовину.

Основная задача фармакокинетики заключается в выявлении связей между концентрацией лекарственного средства или его метаболита (метаболитов) в биологических жидкостях и тканях и фармакологическим эффектом.

Все количественные и качественные процессы входят в понятие первичной фармакологической реакции. Обычно она протекает скрыто и проявляется в виде клинически диагностируемых реакций организма или, как их принято называть, фармакологических эффектов, обусловленных физиологическими свойствами клеток, органов и систем. Каждый эффект лекарства, как правило, по времени можно разделить на латентный период, время максимального лечебного эффекта и его продолжительность. Каждый из этапов обусловлен рядом биологических процессов. Так, латентный период определяется в основном путем введения, скоростью всасывания и распределения вещества по органам и тканям, в меньшей степени - его скоростью биотрансформации и экскреции. Продолжительность эффекта обусловлена преимущественно скоростью инактивации и выделения. Определенное значение имеют перераспределение действующего агента между местами действия и депонирования, фармакологические реакции и развитие толерантности. В большинстве случаев с увеличением дозы лекарства уменьшается латентный период, увеличиваются эффект и его продолжительность. Удобно и практически важно выражать продолжительность лечебного действия полупериодом снижения эффекта. Если полупериод совпадает с концентрацией вещества в плазме, получают объективный критерий для контроля и направленной регуляции терапевтической активности.

Фармакодинамика и фармакокинетика лекарств усложняется при различных патологических состояниях. Каждое заболевание как бы по-своему моделирует фармакологический эффект, в случае нескольких заболеваний картина еще более усложняется.

Конечно, при поражении печени преимущественно нарушается биотрансформация лекарств; болезни почек, как правило, сопровождаются замедлением экскреции ксенобиотика. Однако такие однозначные фармакокинетические модуляции наблюдаются редко, чаще фармакокинетические сдвиги переплетаются со сложными фармакодинамическими изменениями. Тогда не только при одном заболевании повышается или понижается действие лекарства, но в течение заболевания отмечаются существенные колебания, обусловленные как динамикой самого патологического процесса, так и применяемыми в процессе лечения средствами.

ГЛОССАРИЙ

Абсорбция – всасывание, процесс попадание лекарственного вещества с места введения в общий кровоток

Абстиненция – болезненное состояние, возникающее при резком прекращении приема наркотических и других веществ, вызывающих зависимость, сопровождающееся психическими и неврологическими расстройствами.

Авитаминоз – витаминная недостаточность.

Агонист – вещество, вызывающее при взаимодействии с рецептором эффект медиатора.

Аккомодация – приспособление.

Активный транспорт – перенос лекарственных веществ внутрь клетки или из клетки, протекающий с затратой энергии.

Анафилаксия – аллергическая реакция немедленного типа, сопровождается бронхоспазмом и отеком гортани.

Анемия – малокровие.

Анорексигенные средства – средства, снижающие аппетит.

Антагонист – лекарственное вещество, ослабляющее действие другого препарата.

Антациды – лекарственные средства, применяемые при заболеваниях органов пищеварения с целью нейтрализации содержащейся в желудке соляной кислоты.

Антиагреганты – средства, препятствующие склеиванию форменных элементов крови.

Антиангинальные средства – лекарственные средства, применяемые для купирования и профилактики приступов стенокардии.

Антикоагулянты – средства, тормозящие свертываемость крови.

Биодоступность – параметр фармакокинетики, показывающий, какая часть лекарства попала в общий кровотк.

Биотрансформация – процесс превращения лекарственных веществ в организме в другие химические соединения.

Бронхолитики – Средства, вызывающие расслабление гладкой мускулатуры бронхов, расширяющие их просвет и устраняющие спазм.

Витамины – низкомолякулярные соединения, участвующие в различных биохимических процессах организма.

Ганглиоблокаторы – средства, препятствующие передаче возбуждения в ганглиях вегетативной нервной системы.

Гастропротекторы – средства, защищающие слизистую желудка от повреждающего воздействия.

Гематоэнцефалический барьер – барьер, препятствующий обмену веществ между кровью и нервной тканью (мозгом).

Гемопоэз – процесс образования, развития и созревания клеток крови.

Гепатопротекторы – средства, повышающие устойчивость печени к различным воздействиям.

Гипергликемия – повышенное содержание глюкозы в крови.

Гипоксия – недостаточное снабжение клеток кислородом.

Гомеостаз – постоянство внутренней среды организма.

Дезинфицирующие средства – противомикробные средства, предназначенные для уничтожения микробов в окружающей среде.

Дисбактериоз – изменение соотношения и состава естественной микробной флоры человека.

Диспепсия – расстройство пищеварения.

Доза – количество лекарственного вещества, введенное в организм.

Дофамин – медиатор нервной системы.

Желчегонные средства – средства, усиливающие желчеобразование.

Идиосинкразия – необычный эффект лекарства, не связанный с аллергией.

Иммунодепрессанты – средства, угнетающие процессы иммунитета.

Иммуномодуляторы – средства, изменяющие иммунные реакции.

Иммуностимуляторы – средства, стимулирующие процессы иммунитета.

Ингибиторы протонного насоса – средства, препятствующие выходу ионов водорода из клеток слизистой оболочки желудка и в результате этого – образованию соляной кислоты.

Клиренс – очищение, определяется способностью организма элиминировать лекарственные препараты за единицу времени.

Коагулянты – средства, стимулирующие процессы свертывания крови и останавливающие кровотечение.

Контрацептивные средства – средства для предупреждения беременности.

Кумуляция – накопление биологически активных веществ при повторных воздействиях.

Медиатор – биологически активное вещество, образуемое клетками или нгервными окончаниями, осуществляют межклеточные контакты.

Метаболиты – промежуточные продукты обмена веществ.

Мидриаз – расширение зрачка.

Миоз – сужение зрачка.

Минералокортикоиды – группа стероидных гормонов, преимущественно влияющих на водно-солевой обмен.

Миорелаксанты – средства, снижающие тонус скелетной мускулатуры с уменьшением двигательной активности вплоть до полного обездвиживания.

Мочегонные средства (диуретики) – средства, увеличивающие мочеотделение и способствующие выведению из организма солей и воды.

Муколитики – средства, способствующие разжижению мокроты.

Наркотические анальгетики (опиоиды) – средства, избирательно подавляющие болевую чувствительность за счет взаимодействия со специфическими опиоидными рецепторами, вызывают развитие психической и физической зависимости.

Нейролептики (антипсихотические средства) – средства, оказывающие тормозящее влияние на функции ЦНС, устраняют проявления психозов.

Ненаркотические анальгетики (НПВС) – средства, ослабляющие или устраняющие боль, главным образом, воспалительного характера.

Ноотропные средства – средства, стимулирующие обмен веществ в нервных клетках и защищающие от гипоксии, способствуют нормализации психических процессов (мышление, память, обучаемость).

Отхаркивающие средства – средства, облегчающие при кашле отделение и удаление мокроты.

Парентеральный путь введения – введение в организм, минуя пищеварительный тракт.

Премедикация – применение лекарственных средств для подготовки больного к общей или местной анестезии.

Распределение – процесс проникновения лекарства из кровотока в ткани.

Резорбтивное действие – действие лекарственного вещества после всасывания в кровь.

Селективное действие – избирательное действие.

Синергизм – взаимно усиливающее действие лекарственных средств при совместном применении.

Сублингвально – под язык.

Тератогенность – токсичность лекарственных средств, характеризующаяся способностью оказывать повреждающее действие на плод.

Токсичность – действие лекарственных средств, наносящее вред организму.

Толерантность – способность противостоять действию лекарственных веществ в больших дозах без проявлений его повреждающего фактора.

Фармакодинамика – раздел фармакологии, изучающий действие лекарств на организм, механизм действия, характер, силу и длительность эффектов.

Фармакокинетика – раздел фармакологии, изучающий процессы абсорбции, распределения, метаболизма и экскреции лекарственных средств в организме.

Фармакология – медико-биологическая наука о действии лекарственных веществ на организм человека.

Фибринолитики – средства, способствующие растворению фибринового сгустка.

Химиотерапевтические средства – средства, избирательно действующие на подавление жизнедеятельности микроорганизмов или клеток опухолей.

Холиноблокаторы (холинолитики) – средства, препятствующие взаимодействию с холинорецепторами ацетихолина.

Холиномиметики – средства, возбуждающие и способствующие возбуждению холинорецепторов.

Экскреция – выведение.

Энтеральное введение лекарства – введение лекарственных средств через желудочно-кишечный тракт.

Контрольные вопросы к I части Конспекта лекций

1. Что изучает фармакология?

2. Как развивалась наука о лекарствах в древние времена

3. Фармакология на территории России

4. Путь лекарственного препарата от химического синтеза до внедрения в производство

5. Основные понятия фармакологии: лекарственное вещество, фармацевтическая субстанция, лекарственный препарат, лекарственная форма.

6. Классификация лекарственных форм

7. Назвать твердые лекарственные формы

8. Пути введения твердых лекарственных форм

9. Какие лекарственные формы относятся к мягким

10. Особенности применения мягких лекарственных форм

11. Какие лекарственные формы относятся к жидким?

12. Растворы для внутреннего применения

13. Растворы для инъекций

14. Дать определение фармакодинамике

15. Механизм действия лекарств

16. Фармакологические эффекты

17. Дать определение фармакокинетике

18. Абсорбция лекарственных препаратов

19. Распределение лекарств

20. Биотрансформация лекарств

21. Экскреция лекарственных препаратов

Фармакокинетика лекарственных средств.

Фармакокинетика – это раздел фармакологии, изучающий судьбу лекарственных средств в организме, то есть всасывание, распределение по органам и тканям, метаболизм и выведение. То есть, путь лекарственного вещества в организме от момента введения до выведения из организма.

Существуют разные пути введения лекарственного средства в организм. Их можно разделить на 2 большие группы: энтеральный (через желудочно-кишечный тракт), парентеральный (минуя желудочно-кишечный тракт). К энтеральным путям введения относят: пероральный (peros– через рот), сублингвальный (под язык), через зонд в желудок и двенадцатиперстную кишку, ректальный (через прямую кишку). К парентеральным путям введения относятся: накожный, внутрикожный, подкожный, внутримышечный, внутривенный, внутриартериальный, внутрисердечный, под оболочки мозга, ингаляционный, интрастернальный (в грудину). Каждый из путей введения имеет свои преимущества и недостатки.

Самый распространенный путь введения – это через рот (пероральный). Этот путь удобный, простой, не требуется стерильность препаратов. Всасывание лекарственного вещества идет частично в желудке, частично в кишечнике. Однако некоторые лекарственные вещества могут разрушаться под действием желудочного сока. В этом случае лекарственное вещество помещают в капсулы, которые не разрушаются желудочным соком. Под языком лекарственное средство всасывается быстро, минует печень и не вступает в контакт с содержимым желудка и кишечника (Нитроглицерин). При ректальном способе введения (суппозитории, клизмы) лекарственное вещество быстро всасывается, частично минуя печень. Однако, далеко не все препараты хорошо всасываются из слизистой прямой кишки, а некоторые препараты могут раздражать слизистые оболочки.

Из парентеральных путей введения чаще используют: под кожу, внутримышечный, внутривенный. Быстрый эффект наступает при внутривенном пути введения. Однако к трудностям парентеральных способов введения относят: болезненность укола, стерильность препаратов и шприцов, необходимость медицинского персонала для проведения инъекций.

Поступив в организм, лекарственное вещество должно всосаться. Всасывание (абсорбция) – это процесс поступления лекарственного вещества в кровеносную или лимфатическую систему из места введения. Основные механизмы всасывания: пассивная диффузия, облегченная диффузия, активный транспорт, пиноцитоз. Факторы, влияющие на всасывание лекарственного вещества при приеме внутрь: растворимость, лекарственная форма, pHжелудка и кишечника, активность ферментов желудочно-кишечного тракта, перистальтика желудочно-кишечного тракта, прием пищи, мальабсорбция, дисбактериоз.

После всасывания лекарственного вещества в кровь оно будет циркулировать там, в «свободной» или «связанной» форме. «Свободная» форма (не связана с белками крови) растворима в водной фазе плазмы крови. Эта форма легко проникает через стенку капилляров в ткани и оказывает фармакологический эффект. «Связанная» форма – это часть лекарственного вещества, которая связана с белками крови (чаще с альбуминами) и неспособна, проникать в ткани. Эта форма представляет собой как бы депо препарата и по мере выведения лекарственного вещества из организма отщепляется от белка и переходит в «свободную» форму. Следовательно: только «свободная» форма лекарственного вещества оказывает фармакологический эффект.

После всасывания в кровь лекарственное вещество подвергается распределению по органам и тканям. Распределение по органам и тканям чаще всего бывает неравномерным. Степень поступления в ту или иную ткань зависит от разных факторов: от молекулярной массы, от растворимости в воде и липидах, от степени диссоциации; от возраста, пола; от массы жировых депо; от функционального состояния печени, почек, сердца; от способности преодолевать гистогематические барьеры.

К гистогематическим барьерам относят: капиллярную стенку, гематоэнцефалический барьер, гематоофтальмический барьер, плацентарный барьер. Капилляры легко проницаемы для лекарственных веществ, так как стенка капилляров имеет широкие поры, через которые легко проходят водорастворимые вещества с молекулярной массой не больше инсулина (5 – 6 кДа). А жирорастворимые вещества диффундируют через мембрану клеток.

Гематоэнцефалический барьер – представляет собой капиллярную стенку, которая является многослойной мембраной (эндотелий, межуточное вещество и глиальные клетки головного и спинного мозга). Такая мембрана лишена пор. Через гематоэнцефалический барьер легко проникают липофильные вещества путем простой диффузии (например, тиопентал натрия – наркозное средство). Для полярных соединений (пенициллины, миорелаксанты) гематоэнцефалический барьер не проницаем. Гематоэнцефалический барьер гипоталамуса, гипофиза отличается повышенной проницаемостью для лекарственных веществ. Проницаемость гематоэнцефалического барьера повышается при менингите, арахноидите, гипоксии, черепно-мозговых травмах. Некоторые лекарственные препараты (кофеин, эуфиллин, лидаза) повышают проницаемость гематоэнцефалического барьера.

Гематоофтальмический барьер отделяет кровь капилляров от внутриглазной жидкости в камерах глаза. В камеры глаза хорошо проходят липофильные препараты.

Плацентарный барьер разделяет кровообращение матери и плода. На ранних стадиях беременности наблюдается большая порозность этого барьера и многие лекарства легко проникают в плод. Затем этот барьер «укрепляется» и приобретает свойства липидной мембраны. Но с 33 – 35-й недели беременности истончается плацента и значительно повышается проницаемость плацентарного барьера. Это создает опасную ситуацию для плода. Не проникают через плацентарный барьер крупномолекулярные вещества (инсулин, полиглюкин), а также гидрофильные ионизированные молекулы: миорелаксанты, ганглиблокаторы.

Следующий этап фармакокинетики – это элиминация лекарственного вещества. Элиминация (от латинского eliminatum– удалять) – удаление лекарств из организма путем биотрансформации и экскреции.

Биотрансформация – это метаболическое превращение лекарств, в результате которых они приобретают полярные группы, то есть уменьшается растворимость в липидах и возрастает растворимость в воде. Полярные метаболиты пригодны к удалению из организма. Для примера хочу сказать, что если бы не было метаболизма, то одна терапевтическая доза снотворного средства этаминала могла бы находиться в организме 100 лет. Биотрансформация лекарств чаще всего (90 – 95%) происходит в печени, реже в слизистой оболочке кишечника, почках, легких, коже, в крови. Наиболее изучен метаболизм лекарств в печени. Метаболизм в печени происходит: либо в эндоплазматическом ретикулуме гепатоцитов с помощью микросомальных оксидаз смешанной функции либо вне эндоплазматического ретикулума (в митохондриях) с помощью немикросомальных ферментов.

Можно выделить 2 фазы биотрансформации. Первая фаза включает 3 реакции:

    окисление

    восстановление

    гидролиз

В процессе этих реакций молекулы субстрата приобретают полярные группы (гидроксильные, аминные и другие), в результате чего метаболиты лекарственных веществ становятся водорастворимыми и пригодными для выведения. Приведу несколько примеров биотрансформации лекарств. Окислению подвергаются: алкоголь, фенобарбитал, морфин, эфедрин, хлорпромазин. Восстановлению подвергаются: пропранолол, хлорамфеникол, нитрофураны. Гидролизируют следующие лекарства: прокаин, новокаинамид, сердечные гликозиды.

Вторая фаза биотрансформации включает реакции конъюгации, (то есть соединения, синтеза). Лекарственное вещество или метаболиты первой фазы связываются с некоторыми эндогенными веществами и образуют различные конъюгаты (соединения) с глюкуроновой кислотой (глюкоронизирование), уксусной кислотой (реакция ацетилирование), сульфатом, глицином, глутатионом, реакция метилирования по кислороду, азоту, сере. Иногда бывает так, то у одного и того же вещества наблюдается несколько этапов конъюгации: вначале (например) с глицином, потом – с глюкуроновой кислотой и так далее. В результате реакций конъюгации образуются водорастворимые вещества, которые быстро выводятся из организма. Примеры типовых реакций конъюгации: ацетилирование (сульфаниламиды, фтивазид, анестезин, прокаин), глюкуронизация (пропранолол, морфин, левомицетин), связывание с сульфатом (метилдофа, фенол), связывание с аминокислотами, с глицином (салициловая кислота, никотиновая кислота), метилирование: по кислороду (дофамин), по азоту (никотинамид), по сере (унитиол).

В результате биотрансформации лекарственные вещества меняют свою биологическую активность. Могут быть следующие варианты изменения их активности: потеря активности (инактивация) – наиболее частый вид, активация – это повышение активности. Например: фталазол после гидролиза превращается в активное вещество – норсульфазол; уротропин превращается в организме в активный формальдегид, витамин Д гидроксилируется в активный диоксивитамин «Д». Модификация основного эффекта, когда в процессе биотрансформации появляются другие свойства. Например, кодеин в организме частично деметилируется и превращается в морфин.

В процессе метаболизма под влиянием лекарственных средств может происходить индукция (усиление) или ингибирование (торможение) активности микросомальных ферментов печени. К препаратам-индукторам относят: фенобарбитал и другие барбитураты, зиксорин, рифампицин, димедрол, бутадион, стероидные гормоны, верошпирон и другие. При курсовом назначении этих препаратов-индукторов их метаболизм ускоряется в 3 – 4 раза К препаратам-ингибиторам метаболизма относят: эритромицин, левомицетин.

Следующий этап фармакокинетики – это выведение (экскреция) лекарственных веществ из организма. Это заключительный этап фармакокинетики. Лекарственные вещества и их метаболиты экскретируются разными путями: почками (чаще всего), через желудочно-кишечный тракт, легкими, кожей, железами (слюнными, потовыми, слезными, молочными).

Механизмы выведения почками: клубочковая фильтрация (пассивный процесс), канальцевая секреция (активный процесс), канальцевая реабсорбция (пассивный процесс). Клубочковой фильтрации подвергаются водорастворимые вещества с молекулярной массой до 5000 дальтон. Они не должны быть связаны с белками плазмы крови. Пример фильтрации – стрептомицин. Канальцевая секреция лекарственных веществ и метаболитов происходит против градиента концентрации с затратой энергии. Могут секретироваться вещества, связанные с белками. Пример секреции: бензилпенициллин (85%). Канальцевая реабсорбция происходит в дистальных отделах канальцев путем пассивной диффузии по градиенту концентрации. Благодаря реабсорбции пролонгируется (удлиняется) действие препарата (фенобарбитал, димедрол, диазепам).

Экскреция с желчью. Многие полярные лекарственные средства, имеющие молекулярную массу 300 и выше, могут выводиться с желчью через мембрану гепатоцитов, а также путем активного транспорта с помощью фермента глютатионтрансферазы. Степень связывания с белками плазмы крови значения не имеет. Неполярные лекарственные средства не экскретируются в желчь, но их полярные метаболиты довольно быстро попадают в желчь. Вместе с желчью лекарственные вещества попадают в кишечник и выделяются с калом. Некоторые препараты могут подвергаться в кишечнике деконъюгации с помощью кишечной микрофлоры. В этом случае эти препараты могут повторно всасываться (например, дигитоксин). Это явление называется энтерогепатическая (печеночно-кишечная) циркуляция.

Экскреция легкими. Некоторые лекарственные вещества могут выделяться частично или полностью через легкие. Это - летучие и газообразные вещества (например, средства для наркоза), этиловый спирт, камфора и другие.

Экскреция грудными железами. Некоторые препараты могут легко проникать в грудные железы и экскретироваться с молоком матери. В молоко легко проникают препараты, хорошо связывающиеся с жиром: теофиллин, левомицетин, сульфаниламиды, ацетилсалициловая кислота, препараты лития. Возможны токсические эффекты проникающих в грудное молоко лекарственных средств на грудного младенца. Особенно опасны: противоопухолевые препараты, препараты лития, изониазид, левомицетин; препараты, вызывающие аллергию (бензилпенициллин).

Экскреция со слюной. Некоторые препараты могут попасть в слюну путем пассивной диффузии. Чем более липофильный препарат, тем легче он проникает в слюну. Если концентрация препарата в слюне корригирует с концентрацией его в плазме крови, то в этих случаях легко определять концентрацию препарата в слюне. Например, антипирин, пармидин. Частично выделяются со слюной: парацетамол, лидокаин, литий, фенацетин, хинидин, теофиллин, пармидин, антипирин, клофелин.

Термины фармакокинетики.

Элиминация – суммарная величина биотрансформации + экскреции. В результате элиминации лекарственное вещество теряет активность (метаболизирует) и выводится из организма.

Квота-элиминация (или коэффициент элиминации) – это суточная потеря препарата, выраженная в процентах к препарату, содержащегося в организме. Квота-элиминация: строфантина 50%, дигитоксина 7%. Эта величина важна для режима дозирования.

Период полувыведения (полужизни, полуэлиминации) – это время, за которое концентрация препарата в плазме крови снижается наполовину (50%). Обозначается: Т½ в часах и минутах. Чем больше Т½, тем медленнее выводится препарат и его реже надо вводить в организм во избежаний побочных явлений. Эта величина зависит от: пути введения препарата, дозы, возраста; функции печени, почек.

Клиренс – это количественная оценка скорости экскреции лекарственных веществ. Почечный клиренс равен объему плазмы крови, который полностью очищается (освобождается) от лекарственного вещества за единицу времени (л/мин, мл/мин).

Общий клиренс – это объем плазмы крови, из которого за единицу времени выводится лекарственное вещество с мочой, желчью, легкими и другими путями. Это суммарная величина.

Важным параметром фармакокинетики является биодоступность лекарственного вещества – это доля введенной внутрь дозы вещества, которая поступает в общий кровоток в активной форме (в процентах). Биодоступность зависит от: полноты всасывания лекарственного вещества, степени инактивации в желудочно-кишечном тракте, интенсивности метаболизма при первичном прохождении через печень.

Вам надо знать 2 термина: первичное прохождение через печень лекарственного вещества, вторичное поступление в печень. «Первичное прохождение лекарственного вещества через печень» (или «метаболизм первого прохождения») применим для лекарственных препаратов, которые всасываются в желудке и тонком кишечнике, так как из этих органов лекарственное вещество попадает в воротную вену (venaeportae), а далее – в печень и только потом поступает в общий кровоток и разносится по органам и тканям. А оттуда лекарственное вещество вновь поступает в печень, где происходит окончательный метаболизм лекарственного вещества, то есть вторичное поступление в печень.

Таким образом, только при приеме лекарственного средства peros, оно дважды поступает в печень. при первом прохождении через печень может начаться метаболизм лекарственного вещества. Кроме того, некоторые лекарственные вещества начинают метаболизировать уже в желудке и кишечнике. весь комплекс процессов, приводящих к инактивации лекарственного вещества до его попадания в общий кровоток называется «пресистемной элиминацией». Биодоступность выражается в процентах. Если лекарственное вещество вводить внутривенно, то биодоступность будет почти всегда 100%. «Объем распределения» (Vd) – это параметр фармакокинетики, который характеризует степень захвата вещества тканями из плазмы крови (л/кг). Эту величину можно использовать для оценки характера распределения препарата в организме, то есть где больше накапливается вещество: в клетке или в межклеточной жидкости. Если объем распределения низкий (менее 1 – 2 л/кг), то большая часть препарата находится в межклеточной жидкости и наоборот. Знание величиныVdпригодится для оказания помощи при передозировке препарата.