Пульсары и нейтронные звезды. Астрофизики уточнили предельную массу нейтронных звезд

27 декабря 2004 года, всплеск гамма-лучей, прибывших в нашу солнечную систему от SGR 1806-20 (изображено в представлении художника). Взрыв был настолько мощным, что воздействовал на атмосферу Земли на расстоянии свыше 50 000 световых лет

Нейтронная звезда - космическое тело, являющийся одним из возможных результатов эволюции , состоящий, в основном, из нейтронной сердцевины, покрытой сравнительно тонкой (∼1 км) корой вещества в виде тяжёлых атомных ядер и электронов. Массы нейтронных звёзд сравнимы с массой , но типичный радиус нейтронное звезды составляет лишь 10-20 километров. Поэтому средняя плотность вещества такого объекта в несколько раз превышает плотность атомного ядра (которая для тяжёлых ядер составляет в среднем 2,8·10 17 кг/м³). Дальнейшему гравитационному сжатию нейтронной звезды препятствует давление ядерной материи, возникающее за счёт взаимодействия нейтронов.

Многие нейтронные звёзды обладают чрезвычайно высокой скоростью вращения, - до тысячи оборотов в секунду. Нейтронные звёзды возникают в результате вспышек звёзд.

Массы большинства нейтронных звёзд с надёжно измеренными массами составляют 1,3-1,5 массы Солнца, что близко к значению предела Чандрасекара. Теоретически же допустимы нейтронные звёзды с массами от 0,1 до примерно 2,5 солнечных масс, однако значение верхней предельной массы в настоящее время известно весьма неточно. Самые массивные нейтронные звёзды из известных - Vela X-1 (имеет массу не менее 1,88±0,13 солнечных масс на уровне 1σ, что соответствует уровню значимости α≈34 %), PSR J1614-2230ruen (с оценкой массы 1,97±0,04 солнечных), и PSR J0348+0432ruen (с оценкой массы 2,01±0,04 солнечных). Гравитация в нейтронных звёздах уравновешивается давлением вырожденного нейтронного газа, максимальное значение массы нейтронной звезды задаётся пределом Оппенгеймера-Волкова, численное значение которого зависит от (пока ещё плохо известного) уравнения состояния вещества в ядре звезды. Существуют теоретические предпосылки к тому, что при ещё большем увеличении плотности возможно перерождение нейтронных звезд в кварковые.

Строение нейтронной звезды.

Магнитное поле на поверхности нейтронных звёзд достигает значения 10 12 -10 13 Гс (для сравнения - у Земли около 1 Гс), именно процессы в магнитосферах нейтронных звёзд ответственны за радиоизлучение пульсаров. Начиная с 1990-х годов, некоторые нейтронные звёзды отождествлены как магнетары - звёзды, обладающие магнитными полями порядка 10 14 Гс и выше. Такие магнитные поля (превышающие «критическое» значение 4,414·10 13 Гс, при котором энергия взаимодействия электрона с магнитным полем превышает его энергию покоя mec²) привносят качественно новую физику, так как становятся существенны специфические релятивистские эффекты, поляризация физического вакуума и т. д.

К 2012 году открыто около 2000 нейтронных звёзд. Порядка 90% из них - одиночные. Всего же в нашей могут существовать 10 8 -10 9 нейтронных звёзд, то есть где-то по одной на тысячу обычных звёзд. Для нейтронных звёзд характерна высокая скорость движения (как правило, сотни км/с). В результате аккреции вещества облака нейтронная звезда может быть в этом ситуации видна с в разных спектральных диапазонах, включая оптический, на который приходится около 0,003% излучаемой энергии (соответствует 10 звёздной величине).

Гравитационное отклонение света (из-за релятивистского отклонения света видно более половины поверхности)

Нейтронные звёзды - одни из немногих классов космических объектов, которые были теоретически предсказаны до открытия наблюдателями.

В 1933 году астрономы Вальтер Бааде и Фриц Цвикки предположили, что нейтронная звёзда может образоваться в результате взрыва сверхновой. Теоретические расчёты того времени показали, что излучение нейтронной звёзды слишком слабое, и ее невозможно обнаружить. Интерес к нейтронным звёздам усилился в 1960-х гг., когда начала развиваться рентгеновская астрономия, так как теория предсказывала, что максимум их теплового излучения приходится на область мягкого рентгена. Однако неожиданно они были открыты в радионаблюдениях. В 1967 году Джоселин Белл, аспирант Э. Хьюиша, открыла объекты, излучающие регулярные импульсы радиоволн. Этот феномен был объяснён узкой направленностью радиолуча от быстро вращающегося объекта - своеобразный «космический раиомаяк». Но любая обычная звёзда разрушилась бы при столь высокой скорости вращения. На роль таких маяков были пригодны только нейтронные звёзды. Пульсар PSR B1919+21 считается первой открытой нейтронной звездой.

Взаимодействие нейтронной звездой с окрружающим веществом определяют два основных параметра и, как следствие, их наблюдаемые проявления: период (скорость) вращения и величина магнитного поля. Со временем звезда расходует свою вращательную энергию, и её вращение замедляется. Магнитное поле также ослабевает. По этой причине нейтронная звезда за время своей жизни может менять свой тип. Ниже представлена номенклатура нейтронных звёзд в порядке убывания скорости вращения, согласно монографии В.М. Липунова. Поскольку теория магнитосфер пульсаров все еще в состоянии в развитии, существуют альтернативные теоретические модели.

Сильные магнитные поля и малый период вращения. В простейшей модели магнитосферы, магнитное поле вращается твердотельно, то есть с той же угловой скоростью, что и тело нейтронной звезды. На определённом радиусе линейная скорость вращения поля приближается к скорости света. Этот радиус называется «радиусом светового цилиндра». За этим радиусом обычное дипольное поле существовать не может, поэтому линии напряжённости поля в этом месте обрываются. Заряженные частицы, двигающиеся вдоль силовых линий магнитного поля, через такие обрывы могут покидать нейтронную звезду и улетать в межзвездное пространство. Нейтронная звезда данного типа «эжектирует» (от фр. éjecter - извергать, выталкивать) релятивистские заряженные частицы, которые излучают в радиодиапазоне. Эжекторы наблюдаются как радиопульсары.

Пропеллер

Скорость вращения уже недостаточна для эжекции частиц, поэтому такая звезда не может быть радиопульсаром. Однако скорость вращения всё ещё велика, и захваченная магнитным полем окружающая нейтронную звезду материя не может упасть, то есть аккреция вещества не происходит. Нейтронные звёзды данного типа практически не имеют наблюдаемых проявлений и изучены плохо.

Аккретор (рентгеновский пульсар)

Скорость вращения снижается до такого уровня, что веществу теперь ничего не препятсвует падать на такую нейтронную звезду. Падая вещество уже будучи в состоянии плазмы движется по линиям магнитного поля и ударяется о твёрдую поверхность тела нейтронной звезды в районе ее полюсов, разогреваясь до десятков миллионов градусов. Вещество, нагретое до столь высоких температур, ярко светится в рентгеновском диапазоне. Область, в которой происходит столкновение падающего вещества с поверхностью тела нейтронной звезды, очень мала - всего около 100 метров. Это горячее пятно из-за вращения звезды периодически пропадает из вида, что наблюются регулярные пульсации рентген-излучения. Такие объекты и называются рентгеновскими пульсарами.

Георотатор

Скорость вращения таких нейтронных звёзд мала и не препятствует аккреции. Но размеры магнитосферы таковы, что плазма останавливается магнитным полем раньше, чем она будет захвачена гравитацией. Подобный механизм рабатает в магнитосфере Земли, из-за чего данный тип нейтронных звезд и получил своё название.

Магнетар

Нейтронная звезда, обладающая исключительно сильным магнитным полем (до 10 11 Тл). Теоретически существование магнетаров было предсказано в 1992 году, а первое свидетельство их реального существования получено в 1998 году при наблюдении мощной вспышки гамма- и рентгеновского излучения от источника SGR 1900+14 в созвездии Орла. Время жизни магнетаров составляет около 1 000 000 лет. У магнетаров сильнейшее магнитное поле во .

Магнетары являются малоизученным типом нейтронных звёзд по причине того, что немногие находятся достаточно близко к Земле. Магнетары в диаметре насчитывают около 20-30 км, однако массы большинства превышают массу Солнца. Магнетар настолько сжат, что горошина его материи весила бы более 100 миллионов тонн. Большинство из известных магнетаров вращаются очень быстро, как минимум несколько оборотов вокруг оси в секунду. Наблюдаются в гамма-излучении, близком к рентгеновскому, радиоизлучение не испускает. Жизненный цикл магнетара достаточно короток. Их сильные магнитные поля исчезают по прошествии примерно 10 000 лет, после чего их активность и излучение рентгеновских лучей прекращается. Согласно одному из предположений, в нашей галактике за всё время её существования могло сформироваться до 30 миллионов магнетаров. Магнетары образуются из массивных звёзд с начальной массой около 40 М☉.

Толчки, образованные на поверхности магнетара, вызывают огромные колебания в звезде; колебания магнитного поля, которые сопровождают их, часто приводят к огромным выбросам гамма-излучения, которые были зафиксированы на Земле в 1979, 1998 и 2004 годах.

По состоянию на май 2007 года было известно двенадцать магнетаров, и ещё три кандидата ожидали подтверждения. Примеры известных магнетаров:

SGR 1806-20, расположенный на расстоянии 50 000 световых лет от Земли на противоположной стороне нашей галактики Млечный Путь в созвездии Стрельца.
SGR 1900+14, отдалённый на 20 000 световых лет, находящийся в созвездии Орла. После длительного периода низких эмиссионных выбросов (существенные взрывы только в 1979 и 1993) активизировался в мае-августе 1998, и взрыв, обнаруженный 27 августа 1998 г., имел достаточную силу, чтобы заставить выключить космический аппарат NEAR Shoemaker в целях предотвращения ущерба. 29 мая 2008 года телескоп НАСА «Спитцер» обнаружил кольца материи вокруг этого магнетара. Считается, что это кольцо образовалось при взрыве, наблюдавшемся в 1998 году.
1E 1048.1-5937 - аномальный рентгеновский пульсар, расположенный в 9000 световых лет в созвездии Киль. Звезда, из которой сформировался магнетар, имела массу в 30-40 раз больше, чем у Солнца.
Полный список приведён в каталоге магнетаров.

По состоянию на сентябрь 2008, ESO сообщает об идентификации объекта, который изначально считали магнетаром, SWIFT J195509+261406; первоначально он был выявлен по гамма-всплескам (GRB 070610)

МОСКВА, 28 авг - РИА Новости. Ученые обнаружили рекордно тяжелую нейтронную звезду, масса которой в два раза превышает массу Солнца, что заставит их пересмотреть ряд теорий, в частности, теории, согласно которой внутри сверхплотного вещества нейтронных звезд могут присутствовать "свободные" кварки, говорится в статье, опубликованной в четверг в журнале Nature .

Нейтронная звезда представляет собой "труп" звезды, оставшийся после вспышки сверхновой. Ее размер не превышает размеров небольшого города, однако вещество по плотности в 10-15 раз выше плотности атомного ядра - "щепотка" вещества нейтронной звезды весит более 500 миллионов тонн.

Гравитация "вдавливает" электроны в протоны, превращая их в нейтроны, почему нейтронные звезды и получили такое название. До последнего времени ученые полагали, что масса нейтронной звезды не может превысить две солнечных, поскольку иначе гравитация "схлопнет" звезду в черную дыру. Состояние недр нейтронных звезд во многом является загадкой. Например, обсуждается присутствие "свободных" кварков и таких элементарных частиц, как K-мезоны и гипероны в центральных областях нейтронной звезды.

Авторы исследования, группа американских ученых во главе с Полом Деморестом (Paul Demorest) из Национальной радиообсерватории, изучали двойную звезду J1614-2230 в трех тысячах световых лет от Земли, один из компонентов которой является нейтронной звездой, а второй белым карликом.

При этом нейтронная звезда представляет собой пульсар, то есть звезду, испускающую узконаправленные потоки радиоизлучения, в результате вращения звезды поток излучения можно уловить с поверхности Земли с помощью радиотелескопов через разные промежутки времени.

Белый карлик и нейтронная звезда вращаются друг относительно друга. Однако на скорость прохождения радиосигнала от центра нейтронной звезды влияет гравитация белого карлика, она "тормозит" его. Ученые, измеряя на Земле время прихода радиосигналов, могут с высокой точностью установить массу объекта, "ответственного" за задержку сигнала.

"Нам очень повезло с этой системой. Быстровращающийся пульсар дает нам сигнал, приходящий с орбиты, которая прекрасно расположена. Более того, наш белый карлик довольно крупный для звезд подобного типа. Эта уникальная комбинация позволяет использовать эффект Шапиро (гравитационную задержку сигнала) в полной мере и упрощает измерения", - говорит один из авторов статьи Скотт Ренсом (Scott Ransom).

Двойная система J1614-2230 расположена таким образом, что наблюдать ее можно почти "с ребра", то есть в плоскости орбиты. Это облегчает точное измерение масс, входящих в нее звезд.

В результате масса пульсара оказалась равна 1,97 солнечной массы, что стало рекордом для нейтронных звезд.

"Эти измерения массы говорят нам, что если кварки вообще есть в ядре нейтронной звезды, они не могут быть "свободными", а, скорее всего, должны взаимодействовать друг с другом гораздо сильнее, чем в "обычных" атомных ядрах", - поясняет руководитель группы астрофизиков, занимающихся этим вопросом, Ферьял Озел (Feryal Ozel) из университета штата Аризона.

"Меня удивляет, что такой простой факт, как масса нейтронной звезды, может сказать так много в различных областях физики и астрономии", - говорит Ренсом.

Астрофизик Сергей Попов из Государственного астрономического института имени Штернберга отмечает, что изучение нейтронных звезд может дать важнейшую информацию о строении материи.

"В земных лабораториях нельзя изучать вещество при плотности намного больше ядерной. А это очень важно для понимания того, как устроен мир. К счастью, такое плотное вещество есть в недрах нейтронных звезд. Для определения свойств этого вещества очень важно узнать, какую предельную массу может иметь нейтронная звезда и не превратиться в черную дыру", - сказал Попов РИА Новости.

НЕЙТРОННАЯ ЗВЕЗДА
звезда, в основном состоящая из нейтронов. Нейтрон - это нейтральная субатомная частица, одна из главных составляющих вещества. Гипотезу о существовании нейтронных звезд выдвинули астрономы В.Бааде и Ф.Цвикки сразу после открытия нейтрона в 1932. Но подтвердить эту гипотезу наблюдениями удалось лишь после открытия пульсаров в 1967.
См. также ПУЛЬСАР . Нейтронные звезды образуются в результате гравитационного коллапса нормальных звезд с массами в несколько раз больше солнечной. Плотность нейтронной звезды близка к плотности атомного ядра, т.е. в 100 млн. раз выше плотности обычного вещества. Поэтому при своей огромной массе нейтронная звезда имеет радиус всего ок. 10 км. Из-за малого радиуса нейтронной звезды сила тяжести на ее поверхности чрезвычайно велика: примерно в 100 млрд. раз выше, чем на Земле. От коллапса эту звезду удерживает "давление вырождения" плотного нейтронного вещества, не зависящее от его температуры. Однако если масса нейтронной звезды станет выше примерно 2 солнечных, то сила тяжести превысит это давление и звезда не сможет противостоять коллапсу.
См. также ГРАВИТАЦИОННЫЙ КОЛЛАПС . У нейтронных звезд очень сильное магнитное поле, достигающее на поверхности 10 12-10 13 Гс (для сравнения: у Земли ок. 1 Гс). С нейтронными звездами связывают небесные объекты двух разных типов.
Пульсары (радиопульсары). Эти объекты строго регулярно излучают импульсы радиоволн. Механизм излучения до конца не ясен, но считают, что вращающаяся нейтронная звезда излучает радиолуч в направлении, связанном с ее магнитным полем, ось симметрии которого не совпадает с осью вращения звезды. Поэтому вращение вызывает поворот радиолуча, периодически направляющегося на Землю.
Рентгеновские двойные. С нейтронными звездами, входящими в двойную систему с массивной нормальной звездой, связаны также пульсирующие рентгеновские источники. В таких системах газ с поверхности нормальной звезды падает на нейтронную звезду, разгоняясь до огромной скорости. При ударе о поверхность нейтронной звезды газ выделяет 10-30% своей энергии покоя, тогда как при ядерных реакциях этот показатель не достигает и 1%. Нагретая до высокой температуры поверхность нейтронной звезды становится источником рентгеновского излучения. Однако падение газа не происходит равномерно по всей поверхности: сильное магнитное поле нейтронной звезды захватывает падающий ионизованный газ и направляет его к магнитным полюсам, куда он и падает, как в воронку. Поэтому сильно нагреваются только районы полюсов, которые на вращающейся звезде становятся источниками рентгеновских импульсов. Радиоимпульсы от такой звезды уже не поступают, поскольку радиоволны поглощаются в окружающем ее газе.
Состав. Плотность нейтронной звезды растет с глубиной. Под слоем атмосферы толщиной всего несколько сантиметров находится жидкая металлическая оболочка толщиной несколько метров, а ниже - твердая кора километровой толщины. Вещество коры напоминает обычный металл, но гораздо плотнее. В наружной части коры это в основном железо; с глубиной в его составе увеличивается доля нейтронов. Там, где плотность достигает ок. 4*10 11 г/см3, доля нейтронов увеличивается настолько, что некоторые из них уже не входят в состав ядер, а образуют сплошную среду. Там вещество похоже на "море" из нейтронов и электронов, в которое вкраплены ядра атомов. А при плотности ок. 2*10 14 г/см3 (плотность атомного ядра) вообще исчезают отдельные ядра и остается сплошная нейтронная "жидкость" с примесью протонов и электронов. Вероятно, нейтроны и протоны ведут себя при этом как сверхтекучая жидкость, подобная жидкому гелию и сверхпроводящим металлам в земных лабораториях.

При еще более высоких плотностях в нейтронной звезде образуются наиболее необычные формы вещества. Может быть, нейтроны и протоны распадаются на еще более мелкие частицы - кварки; возможно также, что рождается много пи-мезонов, которые образуют так называемый пионный конденсат.
См. также
ЧАСТИЦЫ ЭЛЕМЕНТАРНЫЕ ;
СВЕРХПРОВОДИМОСТЬ ;
СВЕРХТЕКУЧЕСТЬ .
ЛИТЕРАТУРА
Дайсон Ф., Тер Хаар Д. Нейтронные звезды и пульсары. М., 1973 Липунов В.М. Астрофизика нейтронных звезд. М., 1987

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "НЕЙТРОННАЯ ЗВЕЗДА" в других словарях:

    НЕЙТРОННАЯ ЗВЕЗДА, очень маленькая звезда с большой плотностью, состоящая из НЕЙТРОНОВ. Является последней стадией эволюции многих звезд. Нейтронные звезды образуются, когда массивная звезда вспыхивает в качестве СВЕРХНОВОЙ звезды, взрывая свои… … Научно-технический энциклопедический словарь

    Звезда, вещество которой, согласно теоретическим представлениям, состоит в основном из нейтронов. Нейтронизация вещества связана с гравитационным коллапсом звезды после исчерпания в ней ядерного горючего. Средняя плотность нейтронных звезд 2.1017 … Большой Энциклопедический словарь

    Строение нейтронной звезды. Нейтронная звезда астрономический объект, являющийся одним из конечных продук … Википедия

    Звезда, вещество которой согласно теоретическим представлениям состоит в основном из нейтронов. Средняя плотность такой звезды Нейтронная звезда2·1017 кг/м3, средний радиус 20 км. Обнаруживается по импульсному радиоизлучению см. Пульсары … Астрономический словарь

    Звезда, вещество которой, согласно теоретическим представлениям, состоит в основном из нейтронов. Нейтронизация вещества связана с гравитационным коллапсом звезды после исчерпания в ней ядерного горючего. Средняя плотность нейтронной звезды… … Энциклопедический словарь

    Гидростатически равновесная звезда, в во к рой состоит в осн. из нейтронов. Образуется в результате превращения протонов в нейтроны при гравитац. коллапсе на конечных стадиях эволюции достаточно массивных звёзд (с массой, в неск. раз превышающей… … Естествознание. Энциклопедический словарь

    Нейтронная звезда - одна из стадий эволюции звезд, когда в результате гравитационного коллапса она сжимается до таких малых размеров (радиус шара 10 20 км), что электроны оказываются вдавленными в ядра атомов и нейтрализуют их заряд, все вещество звезды становится… … Начала современного естествознания

    Калвера Нейтронная звезда. Была обнаружена астрономами из Пенсильванского государественного университета США и канадского университета Макгилла в созвездии Малой медвидице. Звезда необычна по своим характеристикам и не похожа ни на одну… … Википедия

    - (англ. runaway star) звезда, которая движется с аномально высокой скоростью по отношению к окружающей межзвездной среде. Собственное движение подобной звезды часто указывается именно относительно звездной ассоциации, членом которой… … Википедия

Объекты, о которых пойдет речь в статье, были открыты случайно, хотя ученые Ландау Л. Д. и Оппенгеймер Р. предсказали их существование еще в 1930 году. Речь идет о нейтронных звездах. О характеристиках и особенностях этих космических светил и пойдет речь в статье.

Нейтрон и одноименная звезда

После предсказания в 30-х годах XX столетия о существовании нейтронных звезд и после того, как был открыт нейтрон (1932 г.), Бааде В. вместе с Цвики Ф. в 1933 году на съезде физиков в Америке заявили о возможности образования объекта под названием нейтронная звезда. Это космическое тело, возникающее в процессе взрыва сверхновых.

Однако все выкладки были только теоретическими, так как доказать на практике такую теорию не представлялось возможным из-за отсутствия соответствующего астрономического оборудования и слишком малых размеров нейтронной звезды. Но в 1960 году стала развиваться рентгеновская астрономия. Тогда, совершенно неожиданно, нейтронные звезды были открыты благодаря радионаблюдениям.

Открытие

1967 год стал знаменательным в этой области. Белл Д., будучи аспиранткой Хьюиша Э., смогла открыть космический объект - нейтронную звезду. Это испускающее постоянное излучение радиоволновых импульсов тело. Феномен сравнили с космическим радиомаяком из-за узкой направленности радиолуча, который исходил от вращающегося очень быстро объекта. Дело в том, что любая другая стандартная звезда не смогла бы сохранить свою целостность при такой высокой вращательной скорости. На это способны только нейтронные звёзды, среди которых первой открытой стал пульсар PSR B1919+21.

Судьба массивных звезд очень отличается от маленьких. В таких светилах наступает момент, когда давление газа уже не уравновешивает гравитационные силы. Такие процессы приводят к тому, что звезда начинает неограниченно сжиматься (коллапсировать). При массе звезды, превышающей солнечную в 1,5-2 раза, коллапс будет неизбежным. В процессе сжатия газ внутри звездного ядра нагревается. Поначалу все происходит очень медленно.

Коллапс

Достигая определенной температуры, протон способен превратится в нейтрино, которые сразу покидают звезду, унося с собой энергию. Коллапс будет усиливаться, пока все протоны не перейдут в нейтрино. Таким образом образуется пульсар, или нейтронная звезда. Это коллапсирующее ядро.

Внешняя оболочка при образовании пульсара получает энергию сжатия, которая после будет со скоростью не в одну тысячу км/сек. выброшена в пространство. При этом образуется ударная волна, способная привести к новому звездообразованию. У такой в миллиарды раз превысит первоначальную. После такого процесса, в течение времени от одной недели до месяца, звезда излучает свет в количестве, превышающем целую галактику. Такое небесное светило называют сверхновой звездой. Ее взрыв приводит к образованию туманности. В центре туманности находится пульсар, или нейтронная звезда. Это так называемый потомок звезды, которая взорвалась.

Визуализация

В глубинах всего пространства космоса происходят удивительные события, среди которых - столкновение звезд. Благодаря сложнейшей математической модели ученым НАСА удалось визуализировать буйство огромного количества энергии и вырождение материи, задействованной в этом. Перед глазами наблюдателей разыгрывается невероятно мощная картина космического катаклизма. Вероятность того, что произойдет столкновение нейтронных звезд, - очень велика. Встреча двух таких светил в пространстве начинается с их запутывания в гравитационных полях. Обладая огромной массой, они, так сказать, обмениваются объятиями. При столкновении происходит сильнейший взрыв, сопровождающийся невероятно мощным выбросом гамма-излучения.

Если рассматривать нейтронную звезду отдельно, то это остатки после взрыва сверхновой, у которой жизненный цикл заканчивается. Масса доживающей свой век звезды превышает солнечную в 8-30 раз. Вселенная часто озаряется взрывами сверхновых светил. Вероятность того, что нейтронные светила встретятся во вселенной, достаточно высока.

Встреча

Интересно, что при встрече двух звезд развитие событий нельзя предвидеть однозначно. Один из вариантов описывает математическая модель, предложенная учеными НАСА из Центра космических полетов. Процесс начинается с того, что две нейтронные звезды располагаются друг от друга в космическом пространстве на расстоянии, приблизительно равном 18 км. По космическим меркам нейтронные звезды с массой в 1,5-1,7 раз больше солнечной считаются крошечными объектами. Их диаметр колеблется в пределах 20 км. Благодаря такому несоответствию объема и массы нейтронная звезда является обладательницей сильнейшего гравитационного и магнитного поля. Только представьте себе: чайная ложка материи нейтронного светила весит как вся гора Эверест!

Вырождение

Невероятно высокие гравитационные волны нейтронной звезды, действующие вокруг нее, являются причиной того, что материя не может находиться в виде отдельных атомов, которые начинают разрушаться. Сама же материя переходит в вырожденную нейтронную, в которой строение самих нейтронов не даст возможности перейти звезде в сингулярность и затем - в черную дыру. Если же масса вырожденной материи начнет увеличиваться по причине добавления к ней, то гравитационные силы будут в состоянии преодолеть сопротивление нейтронов. Тогда ничто не будет препятствовать разрушению структуры, образовавшейся в результате столкновения нейтронных звездных объектов.

Математическая модель

Изучая эти небесные объекты, ученые пришли к выводу, что плотность нейтронной звезды сравнима с плотностью вещества в ядре атома. Ее показатели находятся в рамках от 1015 кг/м³ до 1018 кг/м³. Таким образом, самостоятельное существование электронов и протонов невозможно. Вещество звезды практически состоит из одних нейтронов.

Созданная математическая модель демонстрирует, как мощные периодические гравитационные взаимодействия, возникающие между двумя нейтронными звездами, прорывают тонкую оболочку двух звезд и выбрасывают в пространство, окружающее их, огромное количество излучения (энергии и материи). Процесс сближения происходит очень быстро, буквально за доли секунды. В результате столкновения образуется тороидальное кольцо материи с новорожденной черной дырой в центре.

Важное значение

Моделирование таких событий имеет важное значение. Благодаря им ученые смогли понять, как образуются нейтронная звезда и черная дыра, что происходит при столкновении светил, каким образом зарождаются и умирают сверхновые и многие другие процессы космического пространства. Все эти события являются источником появления самых тяжелых химических элементов во Вселенной, еще более тяжелых, чем железо, неспособных образоваться иным путем. Это говорит об очень важном значении нейтронных звезд во всей Вселенной.

Вращение небесного объекта огромного объема вокруг своей оси поражает. Такой процесс вызывает коллапс, но при всем этом масса нейтронной звезды практически остается прежней. Если представить себе, что звезда будет продолжать сжиматься, то, согласно закону сохранения момента вращения, угловая скорость вращения звезды увеличится до невероятных значений. Если для полного оборота звезде нужно было примерно 10 суток, то в результате она будет проделывать тот же оборот за 10 миллисекунд! Это невероятные процессы!

Развитие коллапса

Ученые занимаются исследованием таких процессов. Возможно, мы станем свидетелями новых открытий, которые пока для нас кажутся фантастикой! Но что может быть, если представить себе развитие коллапса дальше? Чтобы легче было представить, возьмем для сравнения пару нейтронная звезда/земля и их гравитационные радиусы. Так вот, при непрерывном сжатии звезда может дойти до такого состояния, когда нейтроны начнут превращаться в гипероны. Радиус небесного тела станет настолько маленьким, что перед нами окажется комок сверхпланетного тела с массой и полем тяготения звезды. Это можно сравнить с тем, как если бы земля стала по размерам равной мячику для пинг-понга, а гравитационный радиус нашего светила, Солнца, был бы равен 1 км.

Если представить, что маленький комок звездного вещества обладает притяжением огромной звезды, то он способен удержать возле себя целую планетарную систему. Но и плотность у такого небесного тела слишком высока. Через него постепенно перестают пробиваться лучи света, тело как бы потухает, оно перестает быть видимым для глаза. Не меняется лишь поле тяготения, которое предупреждает о том, что здесь находится гравитационная дыра.

Открытия и наблюдения

Впервые от слияния нейтронных звезд были зафиксированы совсем недавно: 17 августа. Два года назад было зарегистрировано слияние черных дыр. Это настолько важное событие в области астрофизики, что наблюдения одновременно вели 70 космических обсерваторий. Ученые смогли убедиться в правоте гипотез о гамма-всплесках, удалось наблюдать описанный ранее теоретиками синтез тяжелых элементов.

Такое повсеместное наблюдение за гамма-всплеском, гравитационными волнами и видимым светом дало возможность определить область на небе, в которой произошло знаменательное событие, и галактику, где были эти звезды. Это NGC 4993.

Безусловно, астрономы давно наблюдают за короткими Но до сих пор они не могли точно сказать об их происхождении. За основной теорией была версия слияния нейтронных звезд. Теперь она подтвердилась.

Для описания нейтронной звезды с помощью математического аппарата ученые обращаются к уравнению состояния, связывающему плотность с давлением вещества. Однако таких вариантов целое множество, и ученые просто не знают, какой же из существующих будет правильным. Есть надежда, что гравитационные наблюдения помогут разрешить этот вопрос. На данный момент сигнал не дал однозначного ответа, но уже помогает оценить форму звезды, зависящую от гравитационного притяжения ко второму светилу (звезде).

>

В центре галактики М82 можно увидеть пульсар (розовый)

Изучите пульсары и нейтронные звезды Вселенной: описание и характеристика с фото и видео, строение, вращение, плотность, состав, масса, температура, поиск.

Пульсары

Пульсары представляют собою сферические компактные объекты, размеры которых не выходят за границу большого города. Удивительно то, что при таком объеме они по массивности превосходят солнечную. Их используют для исследования экстремальных состояний материи, обнаружения планет за пределами нашей системы и измерения космических дистанций. Кроме того, они помогли найти гравитационные волны, указывающие на энергетические события, вроде столкновений сверхмассивных . Впервые обнаружены в 1967 году.

Что такое пульсар?

Если высматривать на небе пульсар, то кажется обычной мерцающей звездой, следующей по определенному ритму. На самом деле, их свет не мерцает и не пульсирует, и они не выступают звездами.

Пульсар вырабатывает два стойких узких световых луча в противоположных направлениях. Эффект мерцания создается из-за того, что они вращаются (принцип маяка). В этот момент луч попадает на Землю, а затем снова поворачивается. Почему это происходит? Дело в том, что световой луч пульсара обычно не совмещается с его осью вращения.

Если мигание создается вращением, то скорость импульсов отображает ту, с которой вращается пульсар. Всего было найдено 2000 пульсаров, большая часть их которых делает один оборот в секунду. Но есть примерно 200 объектов, умудряющихся за то же время совершать по сотне оборотов. Наиболее быстрые называют миллисекундными, потому что их количество оборотов за секунду приравнивается к 700.

Пульсары нельзя считать звездами, по крайней мере «живыми». Это скорее нейтронные звезды, формирующиеся после того, как у массивной звезды заканчивается топливо, и она разрушается. В результате создается сильный взрыв – сверхновая, а оставшийся плотный материал трансформируется в нейтронную звезду.

Диаметр пульсаров во Вселенной достигает 20-24 км, а по массе вдвое больше солнечной. Чтобы вы понимали, кусочек такого объекта размером с сахарный куб будет весить 1 миллиард тонн. То есть, у вас в руке помещается нечто весом с Эверест! Правда есть еще более плотный объект – черная дыра. Наиболее массивная достигает 2.04 солнечной массы.

Пульсары обладают сильным магнитным полем, которое от 100 миллионов до 1 квадриллиона раз сильнее земного. Чтобы нейтронная звезда начала излучать свет подобный пульсару, она должна обладать правильным соотношением напряженности магнитного поля и частоты вращения. Случается так, что луч радиоволн может не пройти через поле зрения наземного телескопа и остаться невидимым.

Радиопульсары

Астрофизик Антон Бирюков о физике нейтронных звезд, замедлении вращения и открытии гравитационных волн:

Почему пульсары вращаются?

Медлительность для пульсара – одно вращение в секунду. Наиболее быстрые разгоняются до сотен оборотов в секунду и называются миллисекундными. Процесс вращения происходит, потому что звезды, из которых они образовались, также вращались. Но, чтобы добраться до такой скорости, нужен дополнительный источник.

Исследователи полагают, что миллисекундные пульсары сформировались при помощи воровства энергии у соседа. Можно заметить наличие чужого вещества, которое увеличивает скорость вращения. И это не очень хорошо для пострадавшего компаньона, который однажды может полностью поглотиться пульсаром. Такие системы называют черными вдовами (в честь опасного вида паука).

Пульсары способны излучать свет в нескольких длинах волн (от радио до гамма-лучей). Но как они это делают? Ученые пока не могут найти точного ответа. Полагают, что за каждую длину волн отвечает отдельный механизм. Маякоподобные лучи состоят из радиоволн. Они отличаются яркостью и узостью и напоминают когерентный свет, где частицы формируют сфокусированный луч.

Чем быстрее вращение, тем слабее магнитное поле. Но скорости вращения достаточно, чтобы они излучали такие же яркие лучи, как и медленные.

Во время вращения, магнитное поле создает электрическое, которое способно привести заряженные частицы в подвижное состояние (электрический ток). Участок над поверхностью, где доминирует магнитное поле, называют магнитосферой. Здесь заряженные частицы ускоряются до невероятно высоких скоростей из-за сильного электрического поля. При каждом ускорении они излучают свет. Он отображается в оптическом и рентгеновском диапазоне.

А что с гамма-лучами? Исследования говорят о том, что их источник нужно искать в другом месте возле пульсара. И они будут напоминать веер.

Поиск пульсаров

Главным методом для поиска пульсаров в космосе остаются радиотелескопы. Они небольшие и слабые по сравнению с другими объектами, поэтому приходится сканировать все небо и постепенно в объектив попадают эти объекты. Большая часть была найдена при помощи Обсерватории Паркса в Австралии. Много новых данных можно будет получить с Антенной решетки в квадрантный километр (SKA), стартующий в 2018 году.

В 2008 году запустили телескоп GLAST, который нашел 2050 гамма-излучающих пульсаров, среди которых 93 были миллисекундными. Этот телескоп невероятно полезен, так как сканирует все небо, в то время как другие выделяют лишь небольшие участки вдоль плоскости .

Поиск различных длин волн может сталкиваться с проблемами. Дело в том, что радиоволны невероятно мощные, но могут просто не попадать в объектив телескопа. А вот гамма-излучения распространяются по больше части неба, но уступают по яркости.

Сейчас ученые знают о существовании 2300 пульсаров, найденных по радиоволнам и 160 через гамма-лучи. Есть также 240 миллисекундных пульсаров, из которых 60 производят гамма-излучение.

Использование пульсаров

Пульсары – не просто удивительные космические объекты, но и полезные инструменты. Испускаемый свет может многое поведать о внутренних процессах. То есть, исследователи способны разобраться в физике нейтронных звезд. В этих объектах настолько высокое давление, что поведение материи отличается от привычного. Странное наполнение нейтронных звезд называют «ядерной пастой».

Пульсары приносят много пользы благодаря точности импульсов. Ученые знают конкретные объекты и воспринимают их как космические часы. Именно так начали появляться догадки о наличии других планет. Фактически, первая найденная экзопланета вращалась вокруг пульсара.

Не забывайте, что пульсары во время «мигания» продолжают двигаться, а значит, можно с их помощью измерять космические дистанции. Они также участвовали в проверке теории относительности Эйнштейна, вроде моментов с силой тяжести. Но регулярность пульсации может нарушаться гравитационными волнами. Это заметили в феврале 2016 года.

Кладбища пульсаров

Постепенно все пульсары замедляются. Излучение питается от магнитного поля, создаваемого вращением. В итоге, он также теряет свою мощность и прекращает посылать лучи. Ученые вывели специальную черту, где еще можно обнаружить гамма-лучи перед радиоволнами. Как только пульсар опускается ниже, его списывают в кладбище пульсаров.

Если пульсар сформировался из остатков сверхновой, то обладает огромным энергетическим запасом и быстрой скоростью вращения. Среди примеров можно вспомнить молодой объект PSR B0531+21. В такой фазе он может пробыть несколько сотен тысяч лет, после чего начнет терять скорость. Пульсары среднего возраста составляют большую часть населения и производят только радиоволны.

Однако, пульсар может продлить себе жизнь, если рядом есть спутник. Тогда он будет вытягивать его материал и увеличивать скорость вращения. Такие изменения могут произойти в любое время, поэтому пульсар способен возрождаться. Подобный контакт называют маломассивной рентгеновской двойной системой. Наиболее старые пульсары – миллисекундные. Некоторые достигают возраста в миллиарды лет.

Нейтронные звезды

Нейтронные звезды – довольно загадочные объекты, превышающие солнечную массу в 1.4 раза. Они рождаются после взрыва более крупных звезд. Давайте узнаем эти формирования поближе.

Когда взрывается звезда, массивнее Солнца в 4-8 раз, остается ядро с большой плотностью, продолжающее разрушаться. Гравитация так сильно давит на материал, что заставляет протоны и электроны сливаться, чтобы предстать в виде нейтронов. Так и рождается нейтронная звезда высокой плотности.

Эти массивные объекты способны достигать в диаметре всего 20 км. Чтобы вы осознали плотность, всего одна ложечка материала нейтронной звезды будет весить миллиард тонн. Гравитация на таком объекте в 2 миллиарда раз сильнее земной, а мощности хватает для гравитационного линзирования, позволяющего ученым рассмотреть заднюю часть звезды.

Толчок от взрыва оставляет импульс, который заставляет нейтронную звезду вращаться, достигая нескольких оборотов в секунду. Хотя они могут разгоняться до 43000 раз в минуту.

Пограничные слои вблизи компактных объектов

Астрофизик Валерий Сулейманов о возникновении аккреционных дисков, звездном ветре и веществе вокруг нейтронных звезд:

Недра нейтронных звезд

Астрофизик Сергей Попов об экстремальных состояниях вещества, составе нейтронных звезд и способах изучения недр:

Когда нейтронная звезда выступает частью двойной системы, где взорвалась сверхновая, картина выглядит еще более впечатляющей. Если вторая звезда уступала по массивности Солнцу, то тянет массу компаньона в «лепесток Роша». Это шарообразное облако материла, совершающее обороты вокруг нейтронной звезды. Если же спутник был больше солнечной массы в 10 раз, то передача массы также настраивается, но не такая устойчивая. Материал течет вдоль магнитных полюсов, нагревается и создаются рентгеновские пульсации.

К 2010 году было найдено 1800 пульсаров при помощи радиообнаружения и 70 через гамма-лучи. У некоторых экземпляров даже замечали планеты.

Типы нейтронных звезд

У некоторых представителей нейтронных звезд струи материала текут практически со скоростью света. Когда они пролетают мимо нас, то вспыхивают как свет маяка. Из-за этого их прозвали пульсарами.