Разница между одно- и многомодовыми оптическими кабелями. Оптические волокна. Классификация

Оптоволоконный кабель (он же волоконно-оптический кабель ) – это принципиально другой тип кабеля по сравнению с двумя типами электрического или медного кабеля. Информация из него передается не электрическим сигналом, а световым. Главный его элемент - это прозрачное стекловолокно, по которому светло проходит на огромные расстояния (до десятков километров) с незначительным ослаблением.

Рис. 1. Оптическое волокно. Структура

Структура оптоволоконного кабеля очень простая и похожая на структуру коаксиального электрического кабеля (рис. 1). Только вместо центрального медного проведения здесь используется тонкое (диаметром около 1 - 10 полутемных) стекловолокно (3), а вместо внутренней изоляции - стеклянная или пластиковая оболочка (2), что не позволяет свету выходить за пределы стекловолокна. В этом случае речь идет о режиме так называемого полного внутреннего отражения света от границы двух веществ с разными коэффициентами переламывания (у стеклянной оболочки коэффициент переламывания значительно ниже, чем у центрального волокна). Металлическая оплетка кабеля обычно отсутствует, потому что экранирование от внешних электромагнитных препятствий здесь не нужно. Однако иногда ее все-таки применяют для механической защиты от окружающей среды (такой кабель иногда называют броневым, он может совмещать под одною оболочкой несколько оптоволоконных кабелей).

Оптоволоконный кабель имеет исключительные характеристики по защищенности и секретности переданной информации. Никакие внешние электромагнитные препятствия в принципе не способны обезобразить световой сигнал, а сам сигнал не порождает внешних электромагнитных излучений. Подключиться к этому типа кабеля для несанкционированного прослушивания сети практически невозможно, потому что при этом нарушается целостность кабеля. Теоретически возможна полоса пропускания такого кабеля достигает величины 10 12 Гц, то есть 1000 ГГц, что несравненно выше, чем у электрических кабелей. Стоимость оптоволоконного кабеля постоянно снижается и в настоящий момент приблизительно равняется стоимости тонкого коаксиального кабеля.

Типичная величина затухания сигнала в оптоволоконных кабелях на частотах, которые используются в локальных сетях, составляет от 5 до 20 дБ/км, что приблизительно отвечает показателям электрических кабелей на низких частотах. Но в случае оптоволоконного кабеля при росте частоты переданного сигнала затухания увеличивается очень незначительно, и на больших частотах (особенно свыше 200 МГц) его преимущество перед электрическим кабелем неопровержимые, у него просто нет конкурентов.

Недостатки оптоволоконного кабеля

Самый главный из них - высокая сложность монтажа (при установке оптоволоконного кабеля в разнимании необходима микронная точность, от точности стекловолокна и степени его полирования сильно зависит затухание в разнимании). Для установки разниманий применяют сварку или склеивание с помощью специального геля, который имеет такой же коэффициент переламывания света, что и стекловолокно. Во всяком случае для этого нужна высокая квалификация персонала и специальные инструменты. Поэтому чаще всего оптоволоконный кабель продается в виде предварительно нарезанных кусков разной длины, на обоих концах которых уже установлены разнимания нужного типа. Стоит помнить, что некачественная установка разнимания резко снижает допустимую длину кабеля, обусловленной затуханием.

Также нужно помнить, что использование оптоволоконного кабеля требует специальных оптических приемников и передатчиков, которые превратят световые сигналы в электрических и назад, что временами существенно увеличивает стоимость сети в целом.

Оптоволоконные кабели допускают разветвление сигналов (для этого производятся специальные пассивные распределители (couplers ) на 2-8 каналов), но, как правило, их используют для передачи данных только в одном направлении между одним передатчиком и одним приемником. Ведь любое разветвление неминуемо сильно ослабляет световой сигнал, и если разветвлений будет много, тот свет может просто не дойти до конца сети. Кроме того, в распределителях есть и внутренние потери, так что суммарная мощность сигнала на выходе меньше входной мощности.

Оптоволоконный кабель менее крепок и гибок, чем электрический. Типичная величина допустимого радиуса изгиба составляет около 10 - 20 см, при меньших радиусах изгиба центральное волокно может сломаться. Плохо переносит кабель и механическое растягивание, а также раздавливая влияния.

Чувствительный оптоволоконный кабель и к ионизирующим излучениям, через которые снижается прозрачность стекловолокна, то есть увеличивается затухание сигнала. Резкие перепады температуры также негативно отражаются на нем, стекловолокно может треснуть.

Применяют оптоволоконный кабель только в сетях с топологией звезда и кольцо. Никаких проблем согласования и заземления в этом случае не существует. Кабель обеспечивает идеальную гальваническую развязку компьютеров сети. В будущем этот тип кабеля, вероятно, вытиснит электрические кабели или, во всяком случае, сильно потеснит их. Запасы меди на планете истощаются, а сырья для производства стекла вполне достаточно.

Типы оптоволоконных кабелей

  1. многомодовый или мультимодовый кабель, более дешевый, но менее качественный;
  2. одномодовый кабель, более дорогой, но имеет лучшие характеристики по сравнению с первым.

Суть расхождения между двумя типами сводится к разным режимам прохождения световых лучей в кабеле.



Рис. 2. Распространение света в одномодовом кабеле

В одномодовом кабеле практически все лучи проходят тот же путь, в результате чего они достигают приемника одновременно, и форма сигнала почти не искажается (рис. 2). Одномодовый кабель имеет диаметр центрального волокна около 1,3 мкм и передает светло только с такой же длиной волны (1,3 мкм). Дисперсия и потери сигнала при этом очень незначительны, что позволяет передавать сигналы на значительно большее расстояние, чем в случае применения многомодового кабеля. Для одномодового кабеля применяются лазерные прийомопередавачи, что используют светло исключительно с необходимой длиной волны. Такие прийомопередавачи пока еще сравнительно дороги и не долговечные. Однако в перспективе одномодовый кабель должен стать основным типом благодаря своим прекрасным характеристикам. К тому же лазеры имеют большее быстродействие, чем обычные светодиоды. Затухание сигнала в одномодовом кабеле составляет около 5 дБ/км и может быть даже снижено до 1 дБ/км.


Рис. 3. Распространение света в многомодовом кабеле

В многомодовому кабеле траектории световых лучей имеют заметный разброс, в результате чего форма сигнала на приемном конце кабеля искажается (рис. 3). Центральное волокно имеет диаметр 62,5 мкм, а диаметр внешней оболочки 125 мкм (это иногда отражается как 62,5/125). Для передачи используется обычный (не лазерный) светодиод, что снижает стоимость и увеличивает срок службы приемопередатчиков в сравнении с одномодовым кабелем. Длина волны света во многомодовому кабеле равняется 0,85 мкм, при этом наблюдается разброс длин волн около 30 - 50 нм. Допустимая длина кабеля составляет 2 - 5 км.

Многомодовый кабель - это основной тип оптоволоконного кабеля в это время, потому что он более дешево и более доступно. Затухание во многомодовому кабеле больше, чем в одномодовом и составляет 5 - 20 дБ/км.

Типичная величина задержки для самых распространенных кабелей составляет около 4-5 нс/м, что близко к величине задержки в электрических кабелях.
Оптоволоконные кабели, как и электрические, выпускаются в исполнении plenum и non-plenum .

Из одной удаленной точки до другой, все чаще вместо традиционного медного провода заказчику подрядными организациями предлагается прокладка Об этой интересной технологии мы сегодня и поговорим.

Работают на принципе передачи световой волны по специальному каналу, выполненному из особо чистого, кварцевого стекла. Электрические импульсы электронного оборудования поступают на который генерирует поток световых вспышек и передает их в кабель. На другом конце приемник получает световой поток и транскодирует его обратно в Поскольку весь процесс контролируется электроникой и представляет из себя цифровые преобразования, искажения минимальны.

Чтобы построить такие ВОЛС, используют специальный материал - одномодовое волокно и многомодовое.

Оптические линии получили такое широкое распространение не только благодаря отсутствию помех при передаче сигнала. В числе неоспоримых достоинств этой технологии широкая полоса, очень слабое затухание сигнала, непревзойденная стойкость к любым помехам электромагнитной природы, огромная дальность передачи, составляющая многие десятки километров. Весомым плюсом является и долгий срок службы коммуникаций, проложенных с помощью ВОЛС, составляющий минимум 25 лет.

Виды оптоволокна

При монтаже линий связи с применением ВОЛС выбирают либо многомодовое, либо одномодовое волокно.

Из чего состоит такой кабель? Ядром оптоволокна является кварцевое, сверхчистое стекло, которое и пропускает через себя световой поток. А распыление его не происходит, потому что коэффициент преломления оболочки ниже, чем у ядра, следовательно, световой луч полностью отражается от стенок внутри волокна.

Многомодовое оптоволокно хорошо тем, что в него можно запустить сразу несколько сотен световых мод, которые вводятся под разными углами. Каждая такая мода имеет свою собственную траекторию и, как следствие, уникальное время распространения.

Главный недостаток такого типа волокон - модовая дисперсия, которая сужает и ограничивает максимальную длину линии. Передатчики для многомодовых линий связи обычно имеют предельную дальность около 5 километров.

Проблему снижения модовой дисперсии решает кабель с градиентным профилем преломления сердцевины. В таком оптоволокне, в отличие от стандартных вариантов, параметры преломления уменьшаются от центра ядра к оболочке, что дает значительное улучшение параметров передаваемого сигнала.

Одномодовое волокно спроектировано, исходя из задачи пропуска через всего одной моды (основной). Этот подход дает много преимуществ. Некоторые характеристики у кабеля, выполненного по одномодовой технологии, на порядок лучше, чем у того, что изготовлен по многомодовой. Именно это является решающим фактором, который влияет на выбор инженеров в пользу первой при прокладке новых ВОЛС. Ведь одномодовое волокно дает затухание сигнала на уровне 0,25db на километр, величина дисперсии в нем очень мала, а широкая полоса пропускания обеспечивает четкую и быструю передачу больших объемов данных без искажений.

Но есть в этой бочке меда и ложка дегтя. Этот тип намного дороже, чем многомодовые волокна. Так как размер световодного ядра в одномодовом кабеле очень мал, ввод излучения в такой кабель является непростой задачей и требует очень тщательного контроля при сращивании. Концевые разъемы для этих линий также стоят намного дороже, чем концевики многомодовых линий. К тому же у последних благодаря простоте ввода светового пучка в широкое ядро очень простые и дешевые излучатели, которые к тому же выпускаются огромным количеством конкурирующих компаний.

Существует два вида кабелей в волоконно-оптических линиях связи. А именно: кабель волоконно-оптический многомодовый и, соответственно, одномодовый.

Как следует из названия, по архитектуре одномодовый кабель не позволяет пропустить через себя более одного луча - моды. Таким образом, разница между одномодовым и многомодовым оптическим кабелем заключается в способе распространения по ним оптического излучения. Размер сердечника световода самый значительный признак, который может повлиять на то, одномодовый оптический кабель купить или какой-либо другой.

Меньший диаметр сердечника обеспечивает и меньшую модовую дисперсию, и как результат - возможность передачи информации на большие расстояния без использования роутеров, повторителей и ретрансляторов. Негативным фактором является то, что одномодовое волокно и электронные компоненты, которые обеспечивают передачу, прием и трансформацию данных, а также поддерживающие на должном уровнетехнические характеристики оптических кабелей, весьма дорогостоящи.

Что касается конкретных размеров, то волокно одномодового волокна имеет очень тонкий сердечник, диметр которого составляет 10 мкм и меньше. Пропускная способность кабеля варьируется в пределах от 10 Гбитс и выше.

Многомодовый оптический кабель

В отличие от одномодового многомодовый кабель позволяет пропустить через себя n-ное количество модов. Такой проводник и может содержать независимые световые пути в количестве больше одного. Однако величина диаметра сердечника способствует тому, что свет с большей вероятностью будет отражаться от поверхности внешней оболочки сердечника, а это в свою очередь увеличивает модовую дисперсию. Рассеивание луча в кабеле приводит к сокращению расстояния передачи сигнала и необходимости увеличения количества ретрансляторов.

Любой инженер, закончивший проектирование волс, как конечный результат в сети получит скорость передачи данных на уровне 2.5 гбитс. Снова возникает вопрос: «Если я куплю кабель волоконно-оптический, то какой именно стоит выбрать?» Все зависит от технических показателей и необходимого качества связи. Например, можно приобрести кабель оптический 8 волокон. В таком проводнике, как и указано, 8 волокон, которые размещены в центральном модуле.

Перевод Анны Мотуш

Определение: волокна, поддерживающие более чем одну моду для определенного направления поляризации

Многомодовые волокна - это оптические волокна, поддерживающие несколько поперечных мод для данной оптической частоты и поляризации. Число мод определяется длиной волны и показателем преломления материала. Многомодовые волокна подразделяются на волокна со ступенчатым профилем показателя преломления и градиентные.

Для волокон определены значения радиуса сердцевины и числовой апертуры, позволяющие определить V-параметр. Для больших значений V-параметра количество мод пропорционально V 2 . В частности, для волокон с большим диаметром сердцевины (правая часть рис 1), количество мод может быть очень большим. Такие волокна могут доставлять свет с плохим качеством пучка (например, генерируемый мощными диодами), но для сохранения качественного луча от источника света с высокой яркостью будет лучше использовать волокно с меньшей сердцевиной и с умеренной числовой апертурой, хотя эффективное введение излучения в волокно может быть более сложным.

По сравнению со стандартным одномодовым волокном, многомодовое волокно обычно имеет большую сердцевину, а также высокую числовую апертуру, например, 0.2-0.3. Последнее позволяет работать при изгибании волокна, но также приводит к более интенсивному рассеиванию, которое определяется нарушением геометрической формы оптического волокна. Следствием этих нарушений является то, что часть лучей покидает оптоволокно. Интенсивность рассеивания зависит не только от качества материала, из которого изготавливается сердцевина, но и от качества оболочки, так как часть оптического сигнала распространяется и в ней. Профиль показателя преломления в основном прямоугольный, но иногда встречается и параболический. (См. ниже).

Многомодовое волокно состоит из сердцевины и оболочки. В распространенных типах волоконно-оптических линий связи (см. ниже) на основе многомодовых волокон 50/125 и 62,5/125, диаметр сердцевины равен 50 и 62.5 микрон соответственно и диаметр оболочки 125 микрон. Такие волокна поддерживают сотни мод.

Ввести свет в многомодовое волокно достаточно просто, т.к. требования к соблюдению точности настройки угла и положения луча не очень строгие. С другой стороны, пространственная когерентность на выходе многомодовых волокон невелика, и распределение интенсивности излучения на выходе сложно контролировать по причинам, изложенным ниже.

На рисунке 2 приведены профили электрического поля в модах с шагом преломления волокна, рассчитанные для конкретной длины волны. Это основная мода (LP 01) с распределением интенсивности, близким к гауссовскому, и несколько мод более высокого порядка с более сложными пространственными профилями. Каждая мода имеет различную постоянную распространения. Любое распределение поля можно рассматривать как суперпозицию мод.

Суммарное электрическое поле, распространенное в многомодовом волокне - суперпозиция нескольких мод. Интенсивность зависит не только от оптической мощности во всех модах, но также и от относительной фазы, тут может возникать максимум или минимум за счет интерференции различных мод.

Оба параметра - мощность и фаза, определяются начальными условиями, а относительные фазы изменяются непрерывно вдоль волокна из-за зависимости от констант распространения. Таким образом, сложная картина интенсивности во времени постоянно меняется в пределах длины распространения значительно меньше 1 мм.

Рисунок 3 демонстрирует анимированный пример, где представлены распределения интенсивности, происходящие с интервалом в 2 мкм. Эта интерференционная картина сильно зависит от каких-либо изменений при изгибе или растяжении волокон, а также от температуры.

Обратите внимание, что для света с широкой оптической пропускной способностью (например, для белого света) таких сложных распределений интенсивности не наблюдается потому, что график интенсивности различен для каждой длины волны, так что вклады от различных длин волн усредняются. Чем длиннее волокно, тем ниже оптический диапазон частот, необходимый для этого усреднения.

Оптическое волокно отличается хорошими эксплуатационными свойствами и предназначено для скоростной передачи цифровых данных. Любой кабель состоит из светонесущего элемента, окружённого демпферной оболочкой, задача которой – формировать границу сред и не давать потоку выходить за пределы кабеля. Оба элемента изготавливаются на основе кварцевого стекла: при этом сердцевина имеет более высокий показатель преломления. За счёт этого эффекта гарантируется качество прохождения сигнала.

Одномодовый и многомодовый кабель производятся из сходного по составу сырья, но обладают существенными различиями в технических свойствах. Демпфер у обоих вариантов одинаковый – 125 мкм.

А вот ядра у них разные: 9 мкм – у одномодовых, 50 либо 62,5 мкм – у многомодовых.

Понимание разновидностей волокна помогает безошибочно подобрать вариант, который будет без лишних затрат обеспечивать адекватную пропускную способность канала.

Особенности одномодового кабеля

Здесь прохождение лучей считается стабильным, траектория их остаётся неизменной, плюс в том, что сигнал априори не подвержен сильным искажениям. В таком волокне реализуется ступенчатый профиль преломления. Для передачи используется специально настроенный источник лазера, данные передаются на многокилометровые расстояния без каких-либо перебоев: рассеивание как таковое отсутствует.
Среди отрицательных моментов: такое волокно относительно недолговечно по сравнению со своим конкурентом, дорого в обслуживании – требуется мощное оборудование, требующее настройки.

Одномодовый кабель – всегда в приоритете, если речь идёт о передаче на скоростях более 10 Гбит/с.

Основные разновидности

  1. Со смещением лучевой дисперсии;
  2. Со смещённым показателем минимальной длины волны;
  3. С ненулевой смещённой лучевой дисперсией.

Особенности многомодового кабеля

В качестве оконечного оборудования применяется обычный светодиод, который не требует серьёзного обслуживания и контроля, в итоге снижается износ волокна: срок службы ощутимо дольше.

Многомодовый кабель дешевле при обслуживании, хотя сам по себе несколько дороже, обеспечивает высокое качество передачи на скоростях до 10 Гбит/с при условии, что линия не превышает 550 метров по длине.

О структуре оптического волокна можно узнать из видео:

При соединении в районе 1 Гбит/с волокно типа ОМ4 пригодно для длинных участков – до 1,1 км . Мультижила имеет значительный показатель затухания: в районе 15 дБ/км .


Основные разновидности оптического волокна

Ступенчатое волокно

Изготавливается по более простой технологии. За счёт грубой обработки разброса не может стабилизировать дисперсию на сверхскоростях, поэтому имеет ограниченную сферу применения.

Градиентное волокно

Отличается низким лучевым рассеиванием, показатель преломления распределяется плавно.

Интересное видео о волоконно-оптическом кабеле смотрите в видео ниже:

Применение одномодового и многомодового кабеля

Для ряда отраслей существуют традиции и стандарты, предписывающие использовать тот или иной тип кабеля.

Одномодовый кабель всегда применяется в трансокеанских, морских, магистральных линиях связи со значительной протяжённостью.

В провайдерских сетях для обеспечения доступа в интернет. В системах обработки, связанных с дата-центрами.

Многомодовый кабель находит применение в сетях передачи данных внутри зданий и между зданиями. В системах FTTD.

Любой тип ВОЛС требует бережного отношения и регулярной сервисной диагностики. Для получения полноценных отчётов используются высокоточные рефлектометры, способные зафиксировать даже незначительные потери сигнала.