Строение мозга рептилий. Нервная система, органы чувств и нервная деятельность пресмыкающихся

§ 37. Ассоциативный центр мозга рептилий Рассмотрев общий план строения нервной системы, следует отдельно остановиться на новых принципах организации и работы мозга, впервые реализованных у рептилий. Нервная система архаичных амниот стала логическим развитием строения удачной амфибийной конструкции. Однако мозг амфибий практически выполнял функцию сложного рефлекторного аппарата, а его интеллектуальные возможности остались невостребованными. Эволюция амфибий решалась мышцами, зубами, линейными размерами и масштабами

Некоторые области коры головного мозга имеют специализированные функции. Париетальная доля принимает и обрабатывает все соматосенсорные входы тела. Урон в этой области мозга вызывает то, что известно как сенсорная афазия, в которой пациенты не могут понять язык, но могут создавать звуки.

  • Волокна спинного мозга распределяются таламусом в различные части теменной доли.
  • Связи образуют карту поверхности тела в теменной доле.
  • Эта карта известна как гомункулус.
  • Задняя часть теменной доли имеет участок под названием область Вернике.
  • Эта область важна для понимания сенсорной информации, связанной с языком.
Лобовая доля участвует в двигательных навыках и когнитивных функциях.

Рис. III-8. Сагиттальный (а) и горизонтальный (б) гистологические срезы через голову ящерицы (Lacerta agilis ) в конце эмбрионального развития.

Относительный размер мозга в несколько раз больше, чем у амфибий. К моменту вылупления рептилии обладают эффективным вестибулярным аппаратом, зрением, слухом и обонятельной системой.

Размножения. Шло элементарное освоение пищевых ресурсов, где для развития сложного поведения не было ни места, ни биологической необходимости. Со следами этого периода эволюции позвоночных мы сталкиваемся, пытаясь выработать условные рефлексы у различных представителей современных амфибий. Крайне низкая обучаемость и отсутствие долговременной памяти для накопления индивидуального опыта показывают, что сложных поведенческих задач перед древними амфибиями никогда в их эволюции не стояло. Особенности развития органов чувств и признаки сложного поведения рептилий базируются на особенностях структурной организации головного мозга. Мозг рептилий отличается от мозга амфибий как в количественном, так и в качественном отношении. До появления амниот стратегии поведения или реакция на конкретный раздражитель выбирались по принципу доминантности (см. рис. III-6, е ). Этот принцип состоит в том, что выраженного крупного ассоциативного центра мозга у многих первичноводных позвоночных или амфибий нет (см. рис. III-6, e). Выбор формы поведения происходит на основании сравнения активностей примерно равноценных отделов мозга, обслуживающих различные органы чувств. Решающее значение играет уровень возбуждения мозговых аналитических центров одного из анализаторов. Представительство органа чувств, достигшее в мозге наибольшего возбуждения, и становится основной областью для принятия решения. После выбора одной из инстинктивных реакций происходит её поведенческая реализация. Этот процесс осуществляется под контролем того же простого сравнения доминантностей. Если в процессе осуществления реакции возникает новое раздражение, которое изменяет соотношение возбуждений органов чувств, то поведенческая реализация инстинктивного процесса останавливается. Каждая конкретная ситуация отличается от предыдущей, но задействуется тот же набор органов чувств. Если наибольшее возбуждение достигается в той же сенсорной системе, то поведение сохраняется, а если в другой, то изменяется. Поскольку абсолютно идентичные условия в естественной жизни практически не встречаются, поведение даже самых примитивных анамний будет бесконечно разнообразно. Следовательно, поведение каждой особи будет индивидуальным с довольно высокой динамической адаптивностью. Первые признаки ассоциативного центра появились ещё в мозге амфибий. У них таким центром мог стать средний или промежуточный мозг. Для этого были все основания. В промежуточном мозге находятся нейроэндокринные центры, контролирующие половое поведение, миграции и энергетический баланс организма анамний. Через

Центральный мотор мозга расположен в задней части лобной доли, прямо перед теменной долей. Он получает соединения от соматосенсорной части теменной доли и процессов и инициирует двигательные функции. Подобно гомункулусу в теменной доле, предварительное центральное вращение имеет моторную карту мозга. Область с левой стороны лобной доли известна как область Брока, которая отвечает за обработку языка и контроль мышц, которые производят звуки. Повреждение в этой области вызывает моторную афазию, в которой пациенты могут понять язык, но не могут понять его. Остальные области лобной доли выполняют ассоциативные процессы.

Возникновение мозга птиц

Птицы представляют собой обособленный класс теплокровных, двуногих и обычно летающих амниот. Они покрыты специализированными роговыми придатками - перьями. Современные птицы лишены зубов, но обладают удлинёнными челюстями, которые образуют клюв. Наземное передвижение обеспечивают парные задние конечности. Передние конечности видоизменены в крылья, приспособленные для полёта. Большинство птиц способны летать. Они могут находиться в воздухе очень долго и перелетать на большие расстояния. Сезонные миграции могут составлять несколько тысяч километров. В стабильном климате многие птицы не мигрируют или перемещаются на небольшие расстояния. Летают не все птицы. Пингвины, киви и страусы не обладали этой способностью или утратили её вторично. Птицы - яйцекладущие животные. Все птицы откладывают яйца, но не все их насиживают и заботятся о птенцах. Для нормального развития зародышей необходима контролируемая температура окружающей среды. Это достигается насиживанием яиц, устройством защищённых гнёзд или созданием специальных конструкций, где температура поддерживается за счёт химических реакций распада. Поведение птиц крайне сложно и разнообразно, как и их внешний вид (рис. III-11). У птиц в разных пропорциях встречается инстинктивное и ассоциативное поведение и сохраняется способность к обучению на протяжении всей жизни. Многие птицы обладают хорошей памятью и могут осуществлять несложную инструментальную деятельность. Они легко обучаются решать простые задачи и подражать человеческому голосу. «Слова», произносимые птицами, являются эмоциональным символом ситуационного настроения, в котором они их запомнили, а не результатом рассудочной деятельности. В отличие от всех рассмотренных выше групп животных, птицы любят играть друг с другом или с различными предметами. Они первые среди животных смогли заниматься деятельностью, не приносящей непосредственной биологической выгоды. Мозг птиц обеспечивает возможность предвидения событий. Они рассчитывают своё поведение на несколько шагов вперёд, что уже характерно для высших млекопитающих и человека. Это сходство сложного поведения с поведением млекопитающих свойственно относительно небольшой группе попугаев, врановых, хищных и некоторых других видов. Поведение большинства птиц контролируется преимущественно врождёнными




Затылочная доля получает и обрабатывает визуальную информацию непосредственно из глаз и передает эту информацию в париетальную долю и моторную кору. Одна из вещей, которую вы должны сделать, это интерпретировать перевернутые образы мира, которые проецируются на сетчатку линзой глаз.

Височная доля обрабатывает слуховую информацию из ушей и передает ее в область Вернике по теменной доле и моторной коре лобной доли. Базальные ганглии расположены внутри височной доли, работают с мозжечком для координации тонких движений, таких как движения пальцев. Лимбическая система важна в эмоциональном поведении и в управлении движениями мышечных внутренних органов. Лимбическая система состоит из извилистой извилины, мозолистого тела, млекопитающего тела, обонятельного тракта, миндалины и гиппокампа. Гиппокамп расположен внутри височной доли и имеет важное значение для кратковременной памяти. Амигдала расположена внутри височной доли и контролирует социальное и сексуальное поведение, а также другие эмоции. Например, когда вы задерживаете дыхание, импульсы инсулы подавляют дыхательные центры костного мозга.

  • Расположен внутри лобной доли, в самой глубокой части.
  • Изоляция влияет на автоматические функции ствола мозга.
Верхний мозг разделен на 4 основные зоны или доли.

Рис. I II- 11. Разнообразие птиц.

Столь подробное описание морфологических особенностей строения продиктовано уже упомянутой парадоксальной специализацией птиц. Скелет, покровы, кровеносная, выделительная и дыхательная системы имеют столько специфических особенностей, что их вполне хватило бы для гарантированного исчезновения любой другой группы позвоночных. Исключение составляет нервная система птиц. Во всех систематических группах птиц она построена удивительно однотипно. Анатомически различия обычно сводятся к размерам головного мозга (рис. III-12), а видовые особенности выявляются только на цитоархитектоническом уровне. Она столь же специализирована, как и другие органы, но обладает уникальным архетипом строения, который оказался пригодным для всех форм адаптивного поведения и сред обитания. § 43. Нервная система и органы чувств птиц Нервная система птиц состоит из центрального и периферического отделов. Головной мозг птиц крупнее, чем у любых современных представителей рептилий. Он заполняет полость черепа и имеет округлую форму при небольшой длине (см. рис. III-12). Самый крупный отдел - передний мозг. Он состоит из двух полушарий с гладкой поверхностью или слабо обозначенными продольными углублениями. Эти углубления не являются истинными бороздами, а отражают границы слоёв внутренних ядер (рис. III-13, а , в ). Только у попугаев можно заметить небольшое морфологическое обособление височной доли полушарий. Основной объём полушарий занимают подкорковые ядра, кора имеет рудиментарное строение и занимает небольшую часть верхней стенки мозга. Полушария переднего мозга простираются назад до контакта с мозжечком. Следствием разрастания переднего мозга назад, а мозжечка - вперёд является то, что промежуточного мозга снаружи совсем не видно, хотя его можно определить по выросту эпифиза. Эпифиз у птиц развит незначительно, а гипофиз достаточно крупный. Средний мозг сильно развит, но из-за бокового расположения имеет нехарактерную внешнюю морфологию. Передние выпячивания крыши среднего мозга сдвинуты латерально. Их часто называют зрительными долями (Lobi optici). Мозжечок состоит из массивной средней части (червя), пересекаемой обычно 9 извилинами, и двух небольших боковых долей, которые гомологичны клочку мозжечка млекопитающих. Задний и продолговатый мозг имеет два резких изгиба, обусловленных ориентацией и подвижностью головы птиц. Гистологическое строение головного мозга птиц существенно отличается от такового у других групп позвоночных. Уже у амфибий можно выявить старый и древний стриатум, септум и в зачаточном виде базальные ядра переднего мозга. У рептилий появляется новый

Париетальная доля, ответственная за соматосенсорную информацию; лобная доля, ответственная за двигательную и когнитивную деятельность; затылочная доля, отвечающая за визуальную информацию; височная доля, ответственная за слуховую информацию и память. Ваш мозг и спинной мозг покрыты серией твердых мембран, называемых менингами, которые защищают эти органы от потирания костей черепа и позвоночника.




Для большей защиты мозг и спинной мозг «плавают» в море спинномозговой жидкости, которая находится внутри черепа и позвоночника. Эта буферная жидкость образуется из ткани сосудистого сплетения, расположенной внутри мозга. Эта жидкость протекает через ряд полостей вне мозга и вдоль спинного мозга. Спинномозговая жидкость держится отдельно от кровоснабжения гематоэнцефалическим барьером.

Рис. III-12. Головной и спинной мозг птиц.

Головной мозг птиц обладает крайне стабильной анатомией. Он укорочен в рострокаудальном направлении, а на его поверхности видны только парные полушария переднего мозга, крупный мозжечок и передняя часть крыши среднего мозга. Внешняя форма головного мозга практически не отличается даже у отдалённых видов. а, в - хохлатый осоед (Pernis ptilorhynchus ); б - серый гусь (Anser anser ); г - павлин (Pavo cristatus ).

Стриатум, который становится доминирующей структурой переднего мозга (см. рис. III-12; III-13, а). Важно подчеркнуть, что новый стриатум возникает у птиц вопреки развитию зачаточного неокортекса рептилий. Иначе говоря, у рептилий получили значительное развитие структуры стриатума и септума переднего мозга. Они расположены в базальных частях переднего мозга птиц и развиты намного лучше, чем у рептилий (см. рис. III-13,а ). Однако рептилии приобрели и зачаточные корковые структуры переднего мозга, которые сформировались в результате развития дополнительной (половой) обонятельной системы. Эти структуры стали выполнять у рептилий функции нового интегративного мозгового центра на базе переднего мозга. Казалось бы, дальнейшее развитие корковой системы переднего мозга гарантировало бы птицам необходимые поведенческие преимущества. Тем не менее этого не произошло. У птиц корковые структуры, впервые появившиеся в переднем мозге рептилий, носят откровенно рудиментарный характер. Эволюция корковых структур переднего мозга рептилий полностью остановилась у птиц. Зачатки палео-, архи- и неокортекса практически не играют роли в контроле поведения, поскольку обоняние у птиц развито намного меньше, чем у рептилий. У большинства современных птиц нет развитого обоняния, а вомероназальная система полового обоняния у них вообще отсутствует. По-видимому, в период отделения предков птиц из общего рептилийного ствола обоняние перестало играть для них какую-либо роль. Крупный передний мозг остался функционально невостребован и стал морфологическим субстратом для возникновения ассоциативных центров. Зачаточные корковые структуры не могли играть существенной роли на фоне «освободившихся» от своих функций огромных ядер стриатума и септума. Невостребованная нейронная система этих структур надолго обеспечила мозг птиц резервами памяти и возможностями развития сложного адаптивного поведения. Следы кортикальных структур переднего мозга птиц расположены только в дорсальной зоне полушария, а большую часть мозга занимают стриатум, септум и неостриатум. Функции ассоциативного центра в переднем мозге птиц выполняют чрезвычайно развитые структуры стриатума (рис. III-14, а ). Однако историческое название «гиперстриатум» не отражает реального происхождения этого центра птиц. Ранее считалось, что гиперстриатум возник из стриатума и является его гомологом. Специальные исследования кинетики пролиферации и миграции нейробластов у птиц позволили установить, что гиперстриатум состоит из нейронов различного происхождения.

Как вы видите, ваш мозг - сложный орган, высокоорганизованный, чтобы управлять всем, что вы делаете. Мозг - сложный орган, способный управлять всеми функциями организма. Нейрон образован аксоном, телом или сомой и некоторыми дендритами, способными передавать информацию в любую часть тела.

Основные нейроны - сенсорные, моторные и межнейрональные. Мозги беспозвоночных формируются наборами базальных ганглиев, соединенных вместе, чтобы они могли выполнять основные функции организма. Некоторые из них настолько примитивны, что работают по инстинкту.

Рис. III-13. Цитоархитектоника головного мозга птиц на примере обыкновенной неясыти (Strix aluco ).

Буквы сечений на схеме мозга соответствуют обозначениям гистологических срезов. Микрофотографии гистологических срезов сделаны в соответствии с линиями, показанными на цветной схеме мозга с латеральной поверхности. Оранжевый цвет - передний мозг, красный - средний мозг, фиолетовый - мозжечок, синий - задний и продолговатый мозг.

Высшие мозги состоят из более сложных структур и нейронных соединений. Этот мозг специализируется на разных областях, называемых долями, ответственными за определенную функцию.

  • Лобовая доля отвечает за когнитивные и моторные функции.
  • Теменная доля отвечает за соматосенсорную информацию.
  • Затылочная доля отвечает за зрительные и координационные функции.
  • Временная доля отвечает за слуховые функции, память и баланс.
Все они связаны друг с другом, образуя компетентный и сложный орган, который позволяет вам думать, организовывать, принимать решения и воображать.

Они по большей части мигрируют из латеральной (paleopallium ) и новой коры (neopallium ). Особенностью развития стриатума стало формирование структур ядерного типа, а не стратифицированных корковых образований. У птиц и рептилий разрастание стриатума приводит к экспансии дорсального внутрижелудочкового бугорка, который практически полностью занимает полость латеральных желудочков (см. рис. III-14, а ). Гиперстриатум птиц (рептилии имеют его признаки) выполняет функции новой коры. Он представляет собой высший ассоциативный центр, который определяет принятие решений и является основной зоной хранения индивидуального опыта. Через стриатум осуществляются контроль за двигательными функциями и связь с лимбической системой (Northcutt, 1981). Спинной мозг птиц развит очень хорошо. Он образует большие утолщения в плечевой и поясничной области, откуда отходят нервы передних и задних конечностей (см. рис. III-12, а ). В поясничном утолщении верхняя стенка спинного мозга расходится, и центральный канал расширяется в ромбовидный синус, покрытый сверху только мозговыми оболочками. Спинномозговые нервы соединяются у птиц корешками ещё в канале позвоночного столба и выходят между дугами или через отверстия слившихся позвонков. В плечевом сплетении обычно участвуют 4 нерва, реже 3, а у страусов - только 1 нерв. Для управления задними конечностями у птиц существует два сплетения: поясничное и седалищное, или крестцовое. Поясничное сплетение обычно состоит из 3, но у страусов может включать и 5 нервов. Седалищное сплетение у всех птиц состоит из 4 крестцовых нервов. Черепно-мозговые нервы у птиц представлены 12 парами, которые начинаются по отдельности. Обонятельный нерв (I) идет от нижней поверхности обонятельной доли, которая спереди и снизу примыкает к полушариям переднего мозга. Зрительные нервы (II) после хиазмы плавно переходят в средний мозг, а блуждающий нерв, как и у рептилий, идёт из черепа далеко назад, иннервируя сердце, лёгкие, пищевод и желудок. В отличие от рептилий, добавочный нерв (XI) представлен тонкой веточкой блуждающего нерва, а подъязычный (XII) нерв имеет корешки, отходящие как от продолговатого, так и от спинного мозга (Савельев, 2001). Симпатическая нервная система птиц построена по общему для всех позвоночных принципу. Однако у птиц в шейной части расположен большой симпатический нерв, часто называемый пограничным стволом. Он лежит в канале, образованном двукорневыми началами поперечных отростков позвонков. Участок этого нерва прилежит к сонным артериям, а далее кзади симпатический нерв находится в

Высокоспециализированные познавательные функции, с которыми другое живое существо не учитывается. Пространственное обучение и геометрия. Амфибии в эволюции мозговых когнитивных систем. Сотело, Мария Инес и Муцио, Рубен Нестор. Аннотация В статье представлен сравнительный обзор работ, изучающих пространственное обучение позвоночных с использованием геометрии и визуальных сигналов из окружающей среды. Полученные результаты указывают на то, что эти животные используют как информацию, предоставленную геометрией, так и визуальные сигналы, но когда оба типа ссылок представлены в конфликте, они предпочитают ориентировать геометрическую информацию.

Рис. III-14. Строение полушария переднего мозга и зрительных долей среднего мозга птиц на примере обыкновенной неясыти (Strix aluco , а ) и сизого голубя (Columba livia , б ).

Микрофотографии соответствуют линиям, показанным на цветной схеме мозга. Оранжевый цвет - передний мозг, красный - средний мозг, фиолетовый - мозжечок, синий - задний и продолговатый мозг.

Канале, образуемом головками и бугорками рёбер, и только в поясничной области он лежит свободно. По строению органов чувств птицы имеют несколько отличий от остальных животных. Осязание многих птиц (кулики, утки) сосредоточено в челюстном аппарате, где расположены специализированные механорецепторы (тельца Гранди и Хербста). Осязательные тельца расположены в коже у основания крупных перьев и сконцентрированы в восковице, покрывающей основание клюва. Совы обладают особыми осязательными перьями, расположенными вокруг клюва. У дятлов, дроздов, попугаев и глухарей осязательные функции выполняет язык, весьма богатый нервными окончаниями; в нём присутствуют преимущественно различные типы механорецепторов, а не вкусовые сосочки. Птицы пользуются языком как органом осязания. Вкусовые рецепторы у большинства птиц развиты плохо, поскольку птицы обычно заглатывают пищу, не измельчая её в клюве. Зрение птиц чрезвычайно острое. Глаз способен к аккомодации и обладает рядом морфологических особенностей, позволяющих эффективно ориентироваться, успешно охотиться и издалека определять качество пищи. В сетчатке глаза птиц плотность фоторецепторов намного больше, чем у других позвоночных. В центральной части глаза расположен наклонный гребень, где сосредоточены светочувствительные клетки. Поскольку оптическая проекция растягивается на наклонной плоскости гребня, птицы видят эту часть изображения увеличенной в 0,25-1,2 раза. Дополнительным приспособлением, улучшающим цветовосприятие, являются масляные капли в колбочках сетчатки. Они функционируют, как цветовые фильтры, что позволяет различать больше оттенков в световом диапазоне электромагнитных волн. Зрительная система птиц позволяет воспринимать объекты, излучающие в ультрафиолетовом диапазоне, и поляризованный свет. Некоторые перелётные птицы могут непосредственно воспринимать направление электромагнитных полей, что позволяет им ориентироваться в любой точке на поверхности Земли. У птиц отлично развит слух. Орган слуха состоит из внутреннего, среднего и зачатков наружного уха. Птицы воспринимают звуковые сигналы очень широкого диапазона. В этом отношении они могут намного превосходить многих млекопитающих как по диапазону, так и по чувствительности к слабым звукам. У птиц хорошо развит вестибулярный аппарат. Он состоит из полукружных каналов, отвечающих за рецепцию, связанную с угловым ускорением, и гравитационного рецептора (рецептора линейного ускорения). Все эти компоненты есть и у рептилий. Однако у птиц появился совершенный мозговой центр анализа вестибулярных и кинестетических сигналов - мозжечок.

В глобальном масштабе эти свидетельства указывают на то, что способность ориентироваться в пространстве является эволюционно сохраняющейся особенностью и поддерживает идею о том, что роль гиппокампа в пространственном познании предшествует эволюции полностью наземных позвоночных. Аннотация. В этой статье представлен сравнительный обзор работ, которые изучали пространственное обучение позвоночных с использованием геометрии и визуальных сигналов из окружающей среды. Мы описываем эксперименты, проведенные в нашей лаборатории с пространственной навигацией в земноводных и их зависимость от функционального медиального паллиона.

Времени для адаптации крыльев к движениям в менее плотной среде. «Бег по воде» стал длительным биомеханическим этапом постепенного совершенствования специализированной мускулатуры и неврологических механизмов управления полётом птиц. Параллельно со становлением системы дыхания, кровообращения и мускулатуры передних конечностей у архаичных птиц возникла и теплокровность. Основной причиной её появления стала охотничья среда предков птиц. Значительное преимущество получали те животные, которые могли максимально долго пребывать в холодной воде (см. рис. III-15). Понятно, что теплокровность стала огромным достижением для птиц. Пребывая в холодной воде дольше, чем их конкуренты, они повышали вероятность добывания пищи и снижали общие энергетические затраты. С нырянием и плаванием в холодной воде, по-видимому, связан и тотальный переход предков птиц к откладке яиц. При этом способе размножения животные избавлялись от необходимости согревать и носить с собой своих будущих потомков. Это позволяло уменьшить массу тела животного, повысить плавучесть и снизить энергетические затраты при плавании и нырянии. Насиживаемые или охраняемые кладки яиц можно было увеличивать постепенно. Самки могли откладывать более крупные яйца, что привело к увеличению размеров молодых животных. Переход к плаванию и нырянию предопределил появление крыльев, развитых грудных мышц, исчезновение хвоста и развитие хвостовых желёз птиц. Перья, которые позволяли сохранять тепло при плавании и нырянии, нуждались в специальной защите от намокания. В противном случае архаичным птицам приходилось подолгу сушить своё оперение, как и некоторым современным птицам. Не исключено, что хвостовая железа появилась в эволюции птиц довольно поздно. Однако высока вероятность того, что это произошло одновременно с переходом к плаванию. Следовательно, птицы возникли в несколько этапов. На первом этапе это были небольшие оперённые рептилии, перешедшие к питанию рыбой на мелководье. В связи с новым типом питания протоптицы стали двуногими, а передние конечности долго оставались невостребованными. Обоняние было в значительной степени утрачено, а зрение стало доминирующим дистантным анализатором. На втором этапе переход к плаванию и нырянию привёл к развитию машущих передних конечностей и мощных грудных мышц. Охота в холодных водах и продолжительное ныряние стали стимулом для развития сложного дыхания, теплокровности и внеорганизменного развития эмбрионов. Передний мозг, утратив функции обонятельного анализатора,

Результаты показывают, что эти животные используют как информацию, предоставленную геометрией, как визуальные сигналы, но когда оба типа ссылок представлены в конфликте, они предпочитают геометрию для ориентации. В широком смысле эти данные свидетельствуют о том, что способность ориентироваться в пространстве является характерной эволюционно сохраненной и поддерживает идею о том, что роль гиппокампа в пространственном познании предшествует эволюции полностью наземных позвоночных. Введение. Сочетание нейробиологии, эволюционной биологии и сравнительной психологии многое раскрыло о том, как организация мозга была сформирована эволюцией, чтобы объяснить доступность когнитивных способностей, встречающихся у разных животных, включая людей.

Стал структурной базой для развития памяти, обучения и ассоциативного мышления птиц. Сложные движения в трёхмерной среде стали причиной развития мозжечка птиц как сенсомоторного центра координации движений. На третьем этапе архаичные птицы перешли к «бегу по воде» при активной работе крыльев. Такой способ быстрого перемещения над водой стал предтечей свободного полёта и создал переходные условия для медленного становления неврологических систем контроля полёта. Свободный полёт возник после увеличения размеров крыльев и изменения геометрии маховых перьев. § 45. Адаптивная радиация птиц В довольно разнообразную группу современных птиц входят летающие и нелетающие птицы. Считают, что перья, пневматичный скелет, воздушные мешки, теплокровность и другие морфологические отличия птиц сформировались в связи с адаптацией к активному полёту, поэтому бескилевые нелетающие птицы и пингвины чаще всего рассматриваются как вторично специализированные группы. Предполагается, что первоначально они были летающими, а затем утратили способность к полёту после перехода к жизни в водной среде или на земле. По-видимому, ситуация с появлением пингвинов и нелетающих птиц намного более запутанная, чем представлялось ранее. Все современные птицы имеют нервную систему чрезвычайно сходного строения. Это говорит о том, что предками птиц была одна общая группа рептилий. Они были уже настолько неврологически специализированы, что дальнейшие преобразования мозга становились модификационными. Достигнутого уровня адаптивной специализации нервной системы архаичных птиц было достаточно для успешного освоения любой доступной среды обитания. Опираясь на строение нервной системы, можно предположить следующее развитие событий. Первоначальный архетип нервной системы птиц сформировался у нелетающих рептилий при охоте на мелководье (рис. III-16, а-в ). Это событие произошло задолго до начала активного полёта. Крупный мозг, утративший обонятельные функции и специализированный по зрительно-ассоциативному типу, стал базовой структурой для появления вполне конкурентных, но не летающих животных. Вполне возможно, что часть таких архаичных птиц вернулась к жизни на поверхности земли. Они стали наземными насекомоядными или всеядными животными, которые никогда не были способны летать. Такие реверсии в эволюции птиц происходили неоднократно, но достоверно говорить о современных следах этих событий весьма затруднительно. Скорее всего единственным примером такого рода

Одна из этих структур, гиппокамп, вызвала большой интерес в последние годы. Свидетельства показывают, что роль гиппокампа в памяти и пространственной навигации является общей характеристикой, которой обладает большое количество видов позвоночных. Тем не менее, нейронная организация гиппокампа и его роль в познании представляют интересные различия в видах животных с различными поведенческими экологиями. В этом смысле поведение и его развитие объясняются главным образом с функциональной точки зрения; то есть, как часть фенотипа, который способствует репродуктивному успеху человека.

Происхождение мозга млекопитающих

Основные признаки млекопитающих (Vertebrata ) - волосяной покров, молочные железы и теплокровность (рис. III-17). По меньшей мере два из этих признаков должны присутствовать у каждого представителя группы. У китов, моржей, броненосцев, голых землекопов и некоторых других млекопитающих волосяной покров развит незначительно или отсутствует. Основным отличием млекопитающих считают специальные железы, молоком которых самки выкармливают детёнышей. Млекопитающие имеют также сальные и потовые железы кожи. Эти железы ассоциированы с волосяным покровом и выполняют защитные, коммуникационные и репродуктивные функции. Молочные железы являются эволюционными производными специализированных кожных желёз. Только у млекопитающих есть зрелые эритроциты (красные клетки крови), лишённые ядра. У всех остальных анамний и амниот клетки крови имеют ядра. Столь же глубокие отличия млекопитающих связаны и с головным мозгом. В переднем мозге формируется шестислойная кора, а мозжечок состоит из червя и парных полушарий, которые имеют все млекопитающие (рис. III-18-III-20). Подобных образований головного мозга у других амниот нет (Савельев, 2001). § 46. Обзор классификации млекопитающих Класс современных млекопитающих разделяют на два подкласса: первозвери (Prototheria ) и настоящие звери (Theria ). К первозверям относят однопроходных млекопитающих (Monotremata ), которые могут откладывать яйца, но выкармливают детёнышей молоком и имеют своеобразный волосяной покров. Настоящие звери объединяют две обширные группы низших зверей (Metatheria ) и высших зверей (Eutheria ). Низшие звери представляют собой сумчатых млекопитающих американского и австралийского происхождения, а к высшим зверям относят всех остальных млекопитающих, объединённых в 18 обширных и часто искусственных отрядов (см. рис III-17). Основным отличием низших зверей от высших является морфофункциональный тип организации внутриматочного питания эмбрионов и плодов. Низшие звери рождают очень небольших детёнышей, которые скорее напоминают эмбрионов. Их дальнейшее развитие проходит в специальной сумке, куда открываются молочные железы. Высшие млекопитающие рождают, как правило, крупных и более сформированных детёнышей. Развитие эмбрионов и плодов высших млекопитающих обеспечивается

Таким образом, чтобы понять поведение с этой точки зрения, необходимо изучить эволюционные модели мозга и поведения как две грани одного и того же явления. Простые нервные системы имеют свои собственные поведенческие свойства, но в свою очередь многие другие, которые являются общими для функционирования более сложных нервных систем. Принимая во внимание эту перспективу эволюции мозгового поведения, амфибии составляют решающую группу в позвоночных, потому что они являются представителями, чьи предки преодолели переход воды к Земле и последствия, которые этот переход мог иметь для организации мозга.

Документ

Менгес уже наверху! Тора распахнула двери, вышла на балкон, поежилась и взглянула на небо. А там… да, там… - там облака, подсвеченные проснувшимся солнцем, там взрыв голубого цвета – цвета кайнайта – непальского сапфира, в котором

  • Происхождение жизни на Земле, как устроена Вселенная, и что ждёт «человека разумного» в будущем

    Документ

    Наш адрес во Вселенной таков: «Вселенная, галактика Млечный Путь, Солнечная система, планета Земля». Большинство учёных считает, что Вселенная образовалась в результате Большого Взрыва, но в результате чего возник Большой Взрыв, и

    По этой причине удивительно, насколько мало изучено до настоящего времени церебральная организация земноводных и, в частности, гиппокампа по отношению к их поведению в целом и к памяти и пространственной навигации в частности. Гиппокамп и космическая навигация. Хотя следует также отметить, что информация, собранная о роли гиппокампа в познании, не ограничивается исключительно пространством, изучение Площадь гиппокампа по отношению к пространственной ориентации возрастает и даже распространяется на другие классы позвоночных животных.

  • Происхождение собак

    Документ

    Почти наверняка можно сказать, что собака была первым по времени другом человека, т.е. она была первым животным, которое ему удалось приручить. Дикарь отдаленных времен, не знавший еще ни одного домашнего животного, мог жить только

  • Происхождение и эволюция биовласти

    Документ

    Валентин ЧЕШКО, доктор философ. наук, канд. биол. наук, ст. науч. сотр. Института биологии Харьковского национального университета им. В.Н.Каразина, преподаватель кафедры философии и политологии Харьковского национального экономического

    Здесь важно подчеркнуть, что способность ориентироваться в пространстве является характеристикой, общей для всех животных разных зоологических классов. Виды, которые разнообразны, как муравьи и люди, должны находиться в среде, где они живут, чтобы получить доступ к ресурсам, доступным в их среде. Выживание и репродуктивный успех напрямую зависят от способности животного двигаться и находить ресурсы, чтобы затем, например, взять их в свое гнездо или найти их снова, в зависимости от случая. Эти способности напрямую связаны с способностью животных ориентироваться в пространстве и распознавать сигналы из окружающей среды.


  • Когда все трое встретимся мы вновь?..

    У. Шекспир. Макбет


    Головной мозг современных рыб представлен главным образом средним мозгом с крохотным передним мозгом, у современных амфибий и рептилий это выглядит совсем иначе (рис. 6). И том не менее ископаемые останки самых ранних из известных позвоночных показывают, что основное разделение современного мозга на задний, средний и передний уже существовало. Пятьсот миллионов лет назад в первозданном морс плавали рыбоподобные существа, называемые остракодермами и плакодермами, чей головной мозг уже имел явные признаки того же деления, что и наш. Но относительные размеры и значение этих компонентов и даже выполняемые ими функции были, конечно, весьма отличны от сегодняшних. Самое привлекательное здесь - это, пожалуй, история последовательного разрастания и специализация трех наслоений мозга, надстраивающихся над спинным, промежуточным и средним мозгом. После каждого следующего эволюционного шага старые части мозга по-прежнему продолжают существовать и функционировать. Но к ним добавляется новое наслоение с новыми функциями.

    Таким образом, в общем, животные не двигаются случайным образом, а в определенном смысле и следуют характеристикам поляризованной среды. Ориентация в пространстве имеет адаптивный смысл для животных и, возможно, почему она так эволюционно сохраняется. В этой связи можно подчеркнуть, что есть свидетельства того, что естественный отбор породил развитие конкретных частей, связанных с эволюцией специализированного поведения. Один из самых ярких примеров - разница в объеме и церебральной цитоархитектонической композиции птиц, которые хранят пищу, а затем они должны восстановить ее с помощью пространственной памяти.

    Главным представителем этой точки зрения сегодня является Поль Мак-Лин, руководитель лаборатории эволюции мозга и поведения Национального института умственного здоровья. Одна из особенностей его работы состоит в том, что она проводится на многих различных животных, от ящериц до саймири (беличьих обезьян). Другая заключается в том, что Мак-Лин и его коллеги тщательно изучали «социальное» и всякое иное поведение этих животных, чтобы понять, какая из частей мозга управляет тем или иным видом поведения.


    Рис. 6. Схематическое изображение мозга рыбы, амфибии, рептилии, птицы и млекопитающего в их сравнении друг с другом (мозжечок и продолговатый мозг являются частями заднего мозга): 1 - обонятельные луковицы; 2 - передний мозг; 3 - средний мозг, 4 - мозжечок; 5 - продолговатый мозг


    У беличьих обезьян с характерными «готическими» отметками на лице существует своего рода ритуал встречи с себе подобными. Самцы обнажают зубы, трясут прутья решетки своих клеток, издают клич высокого тона, который, вероятно, для их сородичей является сигналом устрашения, и поднимают ноги, чтобы продемонстрировать свою мужскую силу. Такое поведение в любом современном людском собрании граничило бы с непристойностью, но в стае беличьих обезьян оно совершенно нормально и служит для поддержания иерархического подчинения.

    Мак-Лин обнаружил, что повреждение одного маленького участка мозга беличьей обезьяны лишает ее возможности вести себя подобным образом, но в то же время никак не влияет на другие формы поведения, например половое или оборонительное. Этот участок находится в древнейшей части переднего мозга, то есть в том отделе, который присущ не только людям и другим приматам, но также и тем млекопитающим и рептилиям, которые были нашими предками. Похоже, что у млекопитающих-неприматов и у рептилий сходное ритуализированное поведение управляется тем же участком мозга, но повреждение его может приводить к распаду других автоматизированных форм поведения - таких, например, как ходьба или бег.

    У приматов часто может быть обнаружена связь между половым поведением и положением на иерархической лестнице. Среди японских макак «социальный» ранг поддерживается и усиливается путем ежедневных наскакиваний: самцы низшей касты принимают позы подставления, характерные для самок в период половой охоты, а самцы высшего ранга походя и чисто ритуально наскакивают на них. Эти наскакивания имеют весьма малое половое значение, они служат в качестве легко понимаемого символа власти и подчинения, устанавливая своего рода «кто есть кто» в сложном «общественном» устройстве обезьяньего стада.

    В одном из экспериментов по изучению поведения беличьих обезьян ученые наблюдали за Каспаром, самцом-доминантом, намного более активным, чем все другие в стае. Ему принадлежали две трети всех зарегистрированных случаев демонстрации полового поведения, однако все они были направлены на взрослых самцов. Каспар за все время эксперимента ни разу не спаривался ни с одной самкой. Тот факт, что он активно стремился к доминированию, но весьма вяло - к половым контактам, позволяет полагать, что хотя обе эти функции базируются на одних и тех же системах организма, но они совершенно различны. Исследователи, изучавшие эту стаю, пришли к заключению: «Половое поведение следует рассматривать как наиболее эффективный социальный сигнал в групповой иерархии. Оно ритуализованно и, как представляется, имеет смысл „Я - хозяин"". Скорее всего, оно произошло из сексуальной активности, но используется для социального общения и отделено от функций размножения. Другими словами, это ритуал, возникший из полового поведения, но служащий социальным целям, а не целям размножения».

    Существование поведенческих, равно как нейро-анатомических, связей между половым поведением, агрессивностью и доминированием подтверждается многими исследованиями. Ритуалы брачных игр кошачьих и многих других животных в начальной стадии едва отличимы от драки. Известно, что домашние кошки иногда громко и притворно мурлычут, в то время как их лапы дерут обивку мебели или царапают хозяина.

    Из опытов, аналогичных тем, что проводились с беличьими обезьянами, Мак-Лин вывел весьма привлекательную модель структуры и эволюции мозга, которую он назвал триединым мозгом «Мы должны, - говорит он, - посмотреть на себя и на мир глазами трех совершенно различных личностей», две из которых не вооружены речью. Человеческий мозг, считает Мак-Лин, «равнозначен трем взаимосвязанным биологическим компьютерам», из которых каждый имеет «свой собственный разум, свое собственное чувство времени и пространства, собственную память, двигательную и другие функции». Каждый мозг соответствует одному крупному эволюционному шагу. Все три мозга различаются нейроанатомически и функционально, и в каждом из них совершенно различно распределение таких нейрохимических агентов, как дофамин и холинэстераза.

    В наиболее древней части человеческого мозга находится спинной мозг, продолговатый мозг и варолиев мост (которые вместе образуют задний мозг) и, наконец, средний мозг. Комбинацию из спинного мозга, заднего и среднего мозга Мак-Лин называет «нейрошасси». Оно включает в себя все необходимые механизмы для воспроизводства и самоподдержания организма, включая регуляцию сердечной деятельности, кровообращения и дыхания. У рыб и амфибий эти отделы, по существу, и составляют весь мозг. Но рептилии или высшие животные, у которых удален передний мозг, по словам Мак-Лина, «также лишены движения и цели, как экипаж, покинутый водителем».

    Мне думается, что большой судорожный эпилептический припадок, grand mal, если продолжить это сравнение, можно представить себе как заболевание, при котором все «водители» сбежали из-за электрического шторма в мозге, и в распоряжении несчастной жертвы мгновенно не осталось ничего, кроме самого нейрошасси. Это страшное ухудшение состояния здоровья временно отбрасывает больного на несколько сот миллионов лет назад. Недаром древние греки, назвав болезнь именем, которое мы до сих пор употребляем, считали эпилепсию наказанием, наложенным богами. Очевидно, они сумели распознать истинный характер этого заболевания.

    Мак-Лин различает три типа «водителей» нейрошасси. Владения самого древнего из них расположены вокруг среднего мозга (и состоят главным образом из того, что нейроанатомы называют olfactostriatum, corpus striatum, globus pallidus). Этот «водитель» общий у нас со всеми другими млекопитающими, а также рептилиями. По всей вероятности, он возник несколько сот миллионов лет назад. Мак-Лин называет его комплексом рептилий или, проще, Р-комплексом. Вокруг Р-комплекса расположена лимбическая система. Она общая у нас со всеми другими млекопитающими, но в своей законченной форме уже отличается от той, что есть у рептилий. Она возникла, скорее всего, более ста пятидесяти миллионов лет назад. И наконец, новая кора, неокортекс, вне сомнения, самое последнее эволюционное приобретение мозга, окружающее все остальные его части.

    Как и у других высших млекопитающих и приматов, у человека эта новая кора относительно велика. Чем выше на эволюционной лестнице стоит млекопитающее, тем большую часть его мозга составляет неокортекс. Более всего развит он у нас (а также у дельфинов и китов). Появилась новая кора десятки миллионов лет назад, в эпоху возникновения человека. Схематически мозг представлен на рис. 7. А на рис 8. дано сравнение лимбической системы и новой коры головного мозга трех современных млекопитающих. Примечательно, что концепция триединого мозга хорошо согласуется с выводом о том, что появление млекопитающих и приматов (особенно человека) сопровождалось крупными сдвигами в эволюции мозга. В предыдущей главе эти сдвиги охарактеризованы количественно сопоставлением массы мозга с массой тела.



    Рис. 7. Чрезвычайно схематическое изображение рептильного комплекса, лимбической системы и новой коры головного мозга человека (по Мак-Лину)

    Очень трудно основывать прогрессивное развитие на видоизменении жизненно важных структур, поскольку любой шаг тут грозит оказаться смертельным. Но капитальных изменений можно добиться, надстраивая новые системы поверх старых. Здесь уместно вспомнить и идею рекапитуляции, выдвинутую в XIX веке немецким анатомом Эрнстом Геккелем, которая прошла через несколько циклов научного признания и отрицания. Геккель утверждал, что во время внутриутробного развития животные повторяют - рекапитулируют - последовательность своих предков, сменявших друг друга при эволюционном развитии данного вида. И в самом деле, человеческий зародыш проходит стадии, весьма сильно напоминающие рыб, рептилий и млекопитающих-неприматов, прежде чем приобрести явно человеческий облик. В той стадии, когда он похож на рыбу, человеческий эмбрион имеет даже жаберные щели, которые для него совершенно бесполезны, поскольку плод питается через пуповину. Но они необходимы для эмбриологии: раз жаберные щели были жизненно важными органами для наших далеких предков, то, очевидно, и нам необходимо их иметь, когда мы проходим соответствующую стадию внутриутробного развития. Мозг человеческого зародыша также развивается «изнутри кнаружи» и, грубо говоря, проходит через следующую последовательность: нейрошасси, Р-комплекс, лимбическая система, новые области коры (см. рис. 19, где показано внутриутробное развитие человеческого мозга).



    Рис. 8. Схематическое изображение вида сверху и вида сбоку головного мозга кролика, кошки и обезьяны. Темным показаны области лимбической системы, особенно хорошо различимые на видах сбоку. Светлые участки с бороздами - новая кора, хорошо представленная на видах сверху.


    Причины рекапитуляции могут быть следующими. Естественный отбор имеет дело только с индивидуумами, а не с видами и тем более не с яйцами или зародышами. Таким образом, эволюционные изменения возникают лишь после появления живого существа на свет. Зародыш может обладать такими чертами, которые не имеют ни малейшего приспособительного значения после рождения, как, например, те же жаберные щели у млекопитающих, но, коль скоро они не создают никаких серьезных проблем для зародыша и исчезают до рождения, черты эти могут сохраниться. Наши жаберные щели - это напоминание не о древней рыбе, а о зародыше древней рыбы. Многие новые системы органов развиваются не путем добавления и сохранения, но путем изменения старых систем, как, например, плавники превратились в ноги, а ноги - в ласты или крылья, лапы - в ладони и ступни, сальные железы - в молочные, жаберные дуги - в слуховые кости, кожные чешуи - в акульи зубы. Таким образом, эволюционное развитие путем добавления и сохранения функций ранее существовавших структур может происходить благодаря одной из двух причин: или старая функция так же нужна, как и новая, или нет возможности отказаться от старой системы, поскольку она связана с выживанием.

    В природе есть много других примеров этого вида эволюционного развития. Возьмем наудачу лишь один из них - рассмотрим, почему растение зеленое. В процессе фотосинтеза растения используют энергию красной и фиолетовой частей спектра солнечного света и с ее помощью разлагают воду, образуя углеводороды и удовлетворяя другие свои нужды. Но Солнце посылает значительно больше света в желтой и зеленой частях спектра, нежели в красной или фиолетовой. Растения, обладающие всего лишь одним фотосинтезирующим пигментом хлорофиллом, не используют самую насыщенную часть солнечного спектра. Многие растения с опозданием «заметили» этот факт и осуществили соответствующее изменение: в них развились другие пигменты (например, каротиноиды и фикобилины), которые отражают красный свет и поглощают желтый и зеленый. Прекрасно. Но отказались ли эти растения от хлорофилла? Нет, не отказались. На рис. 9 изображена фотосинтезирующая фабрика красной водоросли. Ее волокна содержат хлорофилл, а маленькие шарики, прикрепленные к этим волокнам, содержат фикобилин, который, собственно, и делает красную водоросль красной. Эти растения по-прежнему передают энергию, полученную ими от зеленой и желтой части солнечного спектра, хлорофиллу, который, как и раньше, служит посредником между светом и химическими реакциями в процессе фотосинтеза, хотя энергия света была первоначально поглощена не им. Природа не может выбросить хлорофилл и заменить его другим, лучшим пигментом, поскольку хлорофилл слишком глубоко вплетен в ткань жизни. Растения, имеющие дополнительные пигменты, безусловно, отличаются от других. Они более эффективны, но и в них в самом центре процесса фотосинтеза продолжает трудиться хлорофилл, пусть и с меньшей ответственностью, чем раньше. Я думаю, что эволюция мозга протекала аналогичным образом. Глубинные, древние образования все еще остаются в строю.


    Рис. 9. Полученная с помощью электронного микроскопа фотография маленького растения, называемою красной водорослью. Его научное название - Porphyridium cruentum . Хлоропласт, фотосинтезирующая фабрика этого организма, занимает почти всю клетку. Фотография сделана с увеличением в 23 000 раз доктором Элизабет Гантт в лаборатории радиационной биологии Смитсонианского института.



    2. Лимбическая система


    Выяснилось, что лимбическая система генерирует сильные или особо яркие эмоции. Отсюда сразу же следует еще один вывод относительно комплекса рептилии: для него характерны не бурные страсти и саднящие душу противоречия, а послушное и бесстрастное осуществление любого поведения, диктуемого генами или мозгом.

    Электрические разряды внутри лимбической системы иногда вызывают симптомы, сходные с теми, что бывают при психозах или при приеме психоделических или галлюцинногенных средств. И в самом деле, мишени, на которые действуют многие психотропные средства, находятся именно в лимбической системе. Вероятно, она управляет весельем и страхом, а также множеством тонких эмоций, про которые принято думать, что они являются чисто человеческими.

    «Главная железа», гипофиз, который оказывает влияние на другие железы и управляет эндокринной системой человека, расположена в самой глубине лимбической системы. Известно, что нарушения в работе эндокринной системы приводят к резким изменениям настроения, а это дает некоторый намек на те связи, что существуют между деятельностью лимбической системы и психологическим состоянием человека. В состав лимбической системы входит образование миндалевидной формы, называемое миндалиной и принимающее существенное участие в механизмах страха и агрессивности. Мирные и спокойные домашние животные становятся почти неправдоподобно буйными или же испытывают непреодолимый страх при электрическом раздражении их миндалин. В одном из таких экспериментов кошка в ужасе съеживалась перед обычной маленькой белой мышкой. Напротив, обычно свирепые животные, такие, как рысь, становятся покорными и позволяют гладить и ласкать себя, если только у них удалена миндалина. Нарушения в работе лимбической системы могут вызвать ничем не объяснимые приступы ярости, страха или чувствительности. Тот же результат может давать и естественное перевозбуждение - те, кто страдает от подобного рода заболеваний, порой испытывают настолько не соответствующие обстоятельствам эмоции, что их считают ненормальными.

    По крайней мере, некоторую роль в механизме воздействия на эмоции таких лимбических эндокринных систем, как гипофиз, миндалина и гипоталамус, играют выделяемые ими гормоны - особые белковые вещества, которые влияют на деятельность других частей мозга. Самым известным из них является, вероятно, адренокортикотропный гормон гипофиза (АКТГ), способный воздействовать на столь несхожие между собой функции мозга, как удержание зрительных образов, тревожность и объем внимания. Есть данные о том, что в третьем желудочке мозга, который соединяет таламус и гипоталамус, то есть в области, тоже входящей в лимбическую систему, обнаружены некоторые относительно небольшие белки, выделяемые гипоталамусом. Схема на рис. 10 может помочь представить себе анатомию тех структур мозга, о которых шла речь в предыдущих абзацах.



    Рис. 10. Схематическое изображение продольного разреза человеческого мозга, в котором большую часть занимает неокортекс, а меньшую - лимбическая система и ствол мозга, или задний мозг. Р-комплекс не показан.

    Имеются основания думать, что начала альтруистического поведения также таятся в лимбической системе. Действительно, за редкими исключениями (главным образом к ним относятся общественные насекомые) млекопитающие и птицы являются единственными организмами, которые уделяют существенное внимание заботе о подрастающем поколении. Эта развившаяся в процессе эволюции способность обеспечивает долгий период пластичности и благодаря этому позволяет воспользоваться огромными возможностями по переработке информации, которой обладает мозг млекопитающих и приматов. Очевидно, любовь - это изобретение млекопитающих.

    Многое в поведении животных доказывает справедливость той точки зрения, что сильные эмоции развивались главным образом у млекопитающих и, хотя и в меньшей степени, у птиц. Я думаю, не вызывает сомнения привязанность домашних животных к людям. Хорошо известно, что многие млекопитающие-матери горюют, когда у них отнимают их детенышей. Интересно, насколько далеко заходят такого рода эмоции? Не бывает ли у лошадей порой проблесков патриотического пыла? Не испытывают ли собаки по отношению к людям нечто похожее на религиозный экстаз? Какие другие сильные и слабые чувства знают животные, ничего нам о них не сообщая?

    Наиболее старая часть лимбической системы - обонятельная кора - ответственна за различение запахов, эмоциональное воздействие которых испытало на себе большинство людей. Способность удерживать события в памяти и вспоминать во многом связана с гиппокампом, структурой, расположенной внутри лимбической системы. Это очевидным образом следует из того, что при повреждении гиппокампа возникают серьезные нарушения памяти. Знаменита история больного Г.М., в течение долгих лет страдавшего эпилептическими припадками, вследствие чего ему была сделана операция, во время которой были удалены участки мозга, с обеих сторон примыкающие к гиппокампу. В результате снизилась частота и сила припадков, но больной потерял память. Он сохранил способность к восприятию, мог усваивать новые двигательные навыки, но забывал все, что происходило более часа назад. Сам он характеризовал свое состояние так: «Каждый день проходит сам по себе - какую бы радость или печаль он мне ни принес». Он описывал свою жизнь как непрерывное продление того чувства дезориентированности в мире, какое многие из нас испытывают, пробуждаясь ото сна, когда очень трудно бывает вспомнить, что произошло только что. Весьма любопытно, что, несмотря на грубые нарушения психики, его IQ (коэффициент интеллектуальности) после операции повысился. Он мог отчетливо различать запахи, но затруднялся указать источник каждого из них. Он проявлял так же ясно выраженное безразличие в вопросах пола.

    В другом случае молодой американский летчик был ранен на шуточной дуэли с другим военнослужащим - острие рапиры прошло через его правую ноздрю, задев ту небольшую часть лимбической системы, что расположена чуть выше носа. В результате память его пострадала, хотя и не так серьезно, как у больного Г.М. При этом многие из его интеллектуальных способностей и способностей к восприятию остались прежними. Повреждение его памяти было особенно заметно на словесном материале. Вдобавок несчастный случай сделал его импотентом и нечувствительным к боли. Однажды он расхаживал босиком по нагретой солнцем металлической палубе прогулочного судна, не сознавая, что ступни ног его сильно обгорели, пока другие пассажиры не стали жаловаться на неприятный запах горелого мяса. Сам же он ни боли, ни запаха не чувствовал.

    Подобные случаи с очевидностью свидетельствуют, что столь сложная форма деятельности, как половое поведение, управляется у млекопитающих одновременно всеми тремя частями триединого мозга - Р-комплексом, лимбической системой и новой корой. (Участие Р-комплекса и лимбической системы в половой деятельности мы уже отмечали ранее. Свидетельства участия в ней новой коры легко могут быть получены путем самонаблюдения.)

    Одна часть лимбической системы отдана устной речи и восприятию вкуса, другая - сексуальным функциям. Связь между половым поведением и запахом очень древняя, особое развитие она получила у насекомых - обстоятельство, проливающее свет как на плюсы, так и на минусы устройства жизни, свойственного нашим отдаленным предкам, при котором они во всем полагались на свое умение различать запахи.

    Однажды я наблюдал эксперимент, в котором голова мухи с помощью очень тонкой проволочки была соединена с осциллографом, и на его экране можно было видеть все электрические импульсы, генерируемые обонятельной системой мухи. Чтобы получить доступ к механизмам обоняния, голова мухи была только что отделена от туловища и потому все еще в известном смысле функционировала. Экспериментаторы предъявляли мухе различные пахучие вещества, в том числе неприятные и раздражающие газы, например аммиак, но заметного эффекта не было - на экране осциллографа каждый раз наблюдалась абсолютно горизонтальная линия. Затем перед отделенной от тела мухи головой расположили крохотное количество аттрактанта, выделяемого самкой этого вида, и тотчас же на экране осциллографа появился вертикальный импульс необычайной величины. Муха почти совсем не умела различать запахи, кроме одного лишь запаха аттрактанта. Но уж зато эти молекулы она умела унюхивать исключительно хорошо.

    Обонятельная специализация такого рода вообще обычна для насекомых. Шелкопряд способен уловить запах аттрактанта самки даже в том случае, когда его усиков достигают всего лишь около сорока молекул этого вещества в секунду. Самке шелкопряда достаточно ежесекундно выделять всего лишь одну стотысячную миллиграмма аттрактанта, чтобы привлечь всех самцов, находящихся вокруг нее в объеме, равном кубической миле. Не будь этого, не было бы шелкопрядов.

    Возможно, наиболее любопытный пример использования запаха для выбора брачного партнера и продолжения рода дают нам южноафриканские жуки. На зиму они зарываются в землю, а весной, когда земля оттаивает, выбираются на поверхность, но обессилевшие самцы раскапывают себя на несколько недель раньше, чем самки. В том же районе Южной Африки произрастает вид орхидеи, которая испускает аромат, идентичный запаху аттрактанта самки жука. Очевидно, и орхидеи и жуки выработали в процессе эволюции, по существу, одно и то же вещество. И тут обнаруживается, что самцы жуков чрезвычайно «близоруки», а вдобавок орхидеи располагают свои лепестки таким образом, что подслеповатым жукам кажется, будто они видят самку. Жуки-самцы в течение нескольких недель предаются разнузданному «наслаждению» среди орхидей, а тут вдруг из-под земли появляются самки. Между тем орхидеи уже благополучно опылены жуками. В результате выживают и жуки, и орхидеи. (Кстати сказать, в интересах орхидей не быть слишком уж привлекательными: ведь если жуки не смогут размножаться, то орхидеям не поздоровится.) Таким образом, мы обнаружили одно ограничение чисто обонятельного полового раздражителя. Другое заключается в том, что, поскольку все самки жука выделяют один и тог же половой аттрактант, самцу нелегко выбрать себе даму сердца. Получается, что самцы изо всех сил стараются привлечь самку или, если речь идет о жуках-рогачах, бьются жвало к жвалу с соперниками, зная, что в качестве приза получат самку, а половой аттрактант, испускаемый самками, служит главным образом для того, чтобы снизить степень полового отбора среди насекомых.

    Иные способы найти себе брачного партнера возникли у рептилий, птиц и млекопитающих. Но связь полового поведения и запаха все еще ясно видна нейроанатомически у высших животных и анекдотически - у людей. Я думаю иногда: не служат ли деодоранты, особенно «женские», благородному делу снижения сексуального возбуждения, чтобы дать нашим мыслям возможность хоть изредка сосредоточиться на чем-нибудь ином.


    3. Новая кора


    Повреждения переднего мозга даже рыбу лишают инициативы и осторожности. У высших животных эти качества, значительно более развитые, локализованы в новой коре - местонахождении многих познавательных функций, характерных для человека. Обычно ее делят на четыре главные части, или доли: лобная, теменная, височная и затылочная. Раньше нейрофизиологи считали, что высшие разделы мозга связаны лишь между собой, но теперь установлено, что они имеют много связей и с подкорковыми отделами мозга. Однако ни в коем случае нельзя считать доказанным, что те части, на которые условно подразделена новая кора, представляют собой функциональные единицы. Каждая из них, вне сомнения, имеет много разных функций, а некоторые функции могут выполняться всеми долями или несколькими из них. В частности, лобные доли, помимо прочего, ответственны, видимо, за планирование действий и управление ими, теменные доли - за пространственное восприятие и обмен информацией между мозгом и остальной частью тела, височные доли - за множество сложных задач восприятия и, наконец, затылочные доли - за зрение, которое является главным органом чувств у человека и других приматов.

    В течение многих десятилетий среди нейрофизиологов преобладала точка зрения, что лобные доли, расположенные сразу же за лобными костями, - то место мозга, где осуществляется предвидение и планирование будущего, то есть две функции, наиболее характерные для человеческого поведения. Но последние исследования показали, что положение не столь просто. Большое число случаев поражения лобных долей, происшедших главным образом в результате огнестрельных ранений головы, были изучены американским нейрофизиологом Гансом-Лукасом Теубером в Массачусетском технологическом институте. Он обнаружил, что многие поражения лобных долей мозга не оказывают почти никакого видимого воздействия на поведение человека. Однако при грубом их разрушении «пациент не полностью лишен способности предвидеть ход событий, но не может представить себя в качестве их потенциального участника». Теубер подчеркивает тот факт, что лобные доли заняты предвидением не только двигательной, но и познавательной деятельности, в частности оценкой тех последствий, к которым приведут произвольные движения. Лобные доли также осуществляют связь между зрением и прямохождением.

    Таким образом, лобные доли могут участвовать в осуществлении функций, присущих лишь человеку, двумя различными путями. Если они управляют предвидением будущего, то обязаны быть также местонахождением забот и вместилищем тревог. Вот почему отсечение лобных долей уменьшает тревожность. Но в то же время такое отсечение - префронтальная лоботомия - весьма уменьшает и способность пациента оставаться человеком. Цена, которую мы платим за предвидение будущего, - это тревога о нем. Возможно, не такая уж радость предсказывать несчастье; Поллианна была намного счастливее Кассандры.

    Но кассандрический компонент нашего естества необходим для выживания. Соображения, касающиеся позиции, занимаемой человеком относительно будущего, легли в основу этики, магии, науки и законности. Выгода от предвидения катастрофы заключается в возможности предпринять шага к тому, чтобы попытаться избежать ее, жертвуя сиюминутным выигрышем в пользу завтрашнего блага. В результате подобного предвидения общество обеспечивает себе материальную безопасность и тем получает возможность создавать для своих членов свободное время, необходимое для социального и технического развития.

    Другая функция, которую, как полагают, осуществляют лобные доли мозга, - это обеспечение возможности ходить на двух ногах. Наша вертикальная походка была бы невозможна без лобных долей. Как будет более подробно показано дальше, умение стоять на двух ногах освободило наши руки для выполнения сложных действий, что, в свою очередь, привело к развитию истинно человеческих культурных и физиологических черт. В самом прямом смысле этих слов цивилизация есть продукт деятельности лобных долей.

    Зрительная информация от глаз поступает в мозг человека, в основном в затылочную его долю, находящуюся в задней части головы, слуховое восприятие - в верхнюю часть височной доли, расположенной за висками. Есть отдельные свидетельства, что эти части новой коры значительно хуже развиты у слепоглухонемых. Поражения затылочной доли в результате огнестрельного ранения, например, часто являются причиной нарушения ноля зрения. Больной может быть во всех остальных отношениях совершенно нормальным, но ему доступно лишь периферическое зрение, прямо перед собою он видит лишь неясно очерченное размытое пятно. В других случаях бывает более странное нарушение зрительного восприятия, в том числе геометрически правильные «плавающие» нарушения поля зрения, своего рода «зрительные припадки», когда, например, предмет, находящийся на полу справа и внизу от пациента, в какие-то моменты воспринимается им как плавающий в воздухе слева и вверху от него, вдобавок повернутым на 180 градусов. Если систематически изучать различные нарушения зрения, случающиеся при различных поражениях затылочных долей, то становится возможным определить, какая часть затылочной доли коры головного мозга ответственна за какую из зрительных функций. У детей, чей мозг способен к самопочинке или к передаче нарушенных функций соседним участкам, вероятность постоянного нарушения зрения значительно меньше, чем у взрослых.

    Способность связывать между собой звуковые и зрительные сигналы локализована в височной доле. Повреждения ее приводят к афазии, то есть невозможности различать устную речь. Примечательно и важно, что больные, у которых поврежден мозг, могут совершенно свободно владеть устной речью, а в то же время полностью утратить способность к письму, или же наоборот. Они могут уметь писать, но не читать, уметь читать цифры, но не буквы, называть предметы, но не цвета. В неокортексе существует удивительное разделение функций, противоречащее привычному представлению, будто чтение и письмо, узнавание слов и узнавание цифр - это очень близкие вещи. Есть также, пока еще, правда, не подтвержденные, сообщения о том, что встречается повреждение мозга, в результате которого больной перестает понимать или страдательный залог, или предложные обороты, или притяжательные конструкции. (Может быть, однажды обнаружат и местонахождение сослагательного наклонения. Не окажется ли тогда, что у людей, говорящих на романских языках, этот крохотный участок мозга необычайно увеличен, а у тех, чей родной язык английский, наоборот, весьма недоразвит?) Как это ни удивительно, похоже, ч го различные абстрактные понятия, включая грамматические «части речи», впаяны в свои особые участки мозга.

    Известен случай, когда поражение височной доли коры головного мозга вызвало совсем уж удивительное нарушение зрительного восприятия, при котором больной не мог различать лица, даже лица членов своей семьи. Когда ему показали изображение человеческого лица, он сказал, что это, возможно, яблоко. На просьбу подтвердить чем-либо свое предположение, он отождествил рот с надрезом на яблоке, нос - с черенком, согнутым вдоль поверхности яблока, а глаза - с двумя отверстиями, проделанными червяком-вредителем. Но тот же самый пациент мог в совершенстве распознавать изображения домов и других неодушевленных предметов. Различного рода эксперименты показывают, что повреждения правой затылочной доли коры головного мозга ведут к тому, что больной не может вызвать в памяти несловесные образы, а повреждения левой затылочной доли ведут к потере языковой памяти.

    Наши способности читать и составлять карты, ориентироваться в трехмерном пространстве и пользоваться подходящими к случаю символами (вероятно, все эти способности либо участвуют в создании языка, либо используют его) сильно страдают при повреждении теменной доли, расположенной вблизи макушки. Один солдат, который во время войны получил тяжелое проникающее ранение теменной доли, в течение целого года не мог попасть ногами в тапочки или же найти свою кровать в госпитальной палате. Впоследствии тем не менее он почти полностью выздоровел.

    Повреждения извилины неокортекса, расположенной в теменной части мозга, вызывают алексию, то есть неспособность распознавать печатный текст. Обнаружилось, что теменная доля коры участвует в построении всех знаковых языков, и потому ее повреждение приводит к резкому снижению умственных способностей, что проявляется в каждодневном поведении.

    Среди всех абстракций, доступных новой коре, высшая - это пользование знаковыми языками, особенно чтение, письмо и математика. Они требуют согласованной деятельности височной, теменной и лобной долей, а может быть, также и затылочной. Однако не все знаковые языки являются неокортикальными; например, пчелы, не обладающие даже намеком на эту часть мозга, выработали богатый язык танца (впервые изученный австрийским энтомологом Карлом фон Фришем), с помощью которого они обмениваются информацией о том, в каком направлении и на каком расстоянии находится пища. Это своеобразный язык жестов, имитирующий движения, которые пчелы на самом деле выполняют, когда находят пищу, - мы бы на их месте сделали несколько шагов в направлении к холодильнику, похлопали себя по животу, прищелкивая при этом языком. Однако словарь этого языка крайне ограничен, он включает в себя, быть может, всего несколько десятков слов. То обучение, которому подвергаются наши малыши во время долгого периода детства, почти целиком - неокортикальная функция.

    Хотя большая часть обонятельной информации перерабатывается в лимбической системе, кое-какая работа с ней происходит и в неокортексе. Похожая ситуация складывается и с памятью. Кроме обонятельной коры, важной частью лимбической системы является, как уже говорилось, гиппокамп. После того как у животного удалена обонятельная кора, оно может все-таки улавливать запах, хотя и значительно хуже, чем раньше. Это еще одна демонстрация избыточности функций мозга. Есть данные, позволяющие полагать, что у современного человека механизм кратковременной памяти на запах находится в гиппокампе. Первоначальной функцией гиппокампа могла быть исключительно кратковременная память на запах, полезная, например, для выслеживания жертвы или нахождения существ противоположного пола. Но двустороннее повреждение гиппокампа приводит, как в случае с больным Г. М., к серьезным нарушениям всех видов кратковременной памяти. Такие больные в буквальном смысле не могут вспомнить, что случилось секунду назад. Очевидно, как гиппокамп, так и лобные доли участвуют в организации кратковременной памяти человека.

    Один из интересных выводов, следующих из этого утверждения, заключается в том, что механизмы кратковременной и долговременной памяти расположены в различных частях мозга. Классический условный рефлекс - способность павловских собак выделять слюну в тот момент, когда звонит звонок, - вероятно, базируется в лимбической системе. Это долговременная память, но очень ограниченного типа. Сложная человеческая долговременная память связана с новой корой, которая дает человеку возможность продумывать наперед свои действия. По мере того как мы стареем, мы все чаще забываем, что было сказано нам мгновение назад, а в то же время сохраняем в памяти яркие и точные образы событий, происходивших в нашем детстве. При этом, однако, и наша кратковременная и наша долговременная память остается в полном порядке - мы испытываем лишь сложности в переписывании нового материала из первой во вторую. Пенфилд полагает, что причина тут кроется в недостаточном кровоснабжении гиппокампа в старости - из-за атеросклероза или иных физических недомоганий. Таким образом, старики - а также и не такие уж старики - могут испытывать серьезные трудности, связанные с доступом к кратковременной памяти, обладая в других случаях живым и острым умом. Здесь видно отчетливое различие между кратковременной и долговременной памятью, объясняющееся их локализацией в различных частях мозга. Официантки в закусочных могут запоминать огромное количество информации, которую они с большой точностью передают на кухню. Но час спустя вся она полностью стирается, поскольку была заложена в кратковременную память и не было предпринято никаких усилий, чтобы переписать ее в долговременную.

    Механизм извлечения из памяти может быть сложным. Обычно мы знаем, что в нашей долговременной памяти находится нечто - слово, имя, лицо или опыт, но не можем вызвать их оттуда, как бы ни пытались. Но стоит подумать о чем-либо другом, но близком, и память сама отдает нам то, что скрывала. (Человеческое зрение устроено в какой-то мере сходным образом. Когда мы смотрим на плохо различимый объект - скажем, на звезду - прямо, то работает так называемая центральная ямка глаза, то есть тот участок сетчатки, где острота зрения максимальна и также максимальна плотность светочувствительности клеток, называемых колбочками. Но когда мы переводим взгляд немного в сторону, глядя на предмет, как говорится, искоса, мы тем самым включаем в игру другие клетки, называемые палочками, которые способны улавливать слабый свет и, стало быть, могут увидеть плохо различимую звезду.) Интересно было бы узнать, отчего «думание вбок» облегчает вспоминание. Быть может, тут все дело просто в том, что таким образом к нужным следам в памяти удается добраться другим нейронным путем - правда, эта гипотеза предполагает, что деятельность нашего мозга организована не слишком удачно.

    Каждому из нас случалось однажды проснуться с ощущением, что утром обязательно вспомнишь вот этот яркий, леденящий, многое объясняющий или еще чем-нибудь замечательный сон, однако на следующий день в памяти не остается ни малейшего следа от содержания этого сновидения или, в лучшем случае, сохраняется лишь смутное воспоминание о тех эмоциях, что он вызвал. С другой стороны, если сон этот показался мне достаточно важной причиной, чтобы разбудить среди ночи жену и рассказать ей о нем, то утром я безо всякой ее помощи легко восстанавливаю в памяти его содержание. Точно так же, если я дал себе труд записать свой сон, то, проснувшись, совершенно свободно вспоминаю его, не обращаясь к своим ночным заметкам. То же происходит, если нужно запомнить номер телефона. Если мне сообщают его и я просто думаю об этом номере, скорее всего я его забуду или перепутаю цифры. Если же я повторю номер телефона вслух или запишу его, то потом легко могу вспомнить. Это, безусловно, означает, что в нашем мозге есть участок, который запоминает звуки и образы, а не мысли. Мне думается, память такого рода возникла еще до того, как у нас в голове появилось слишком много мыслей, - в те времена, когда важным было запомнить шипение нападающей рептилии или тень падающего камнем сокола, а не наши собственные случайные философские размышления.


    О природе человека


    Несмотря на всю привлекательность идеи локализации функций, которая составляет суть триединой модели мозга, я еще раз подчеркиваю, что было бы нелепым упрощенчеством утверждать, будто различные функции в мозге совершенно разделены. Ритуальное и эмоциональное поведение людей, вне всякого сомнения, находится под сильным влиянием абстрактного мышления, свойственного новым областям коры. На этом, как показал анализ, основаны чисто религиозные верования, а также сугубо логические (философские) обоснования общественной иерархии - вроде утверждений, будто монархи - это помазанники Божьи (Т. Гоббс). Точно так же животные, в том числе не являющиеся даже приматами, имеют некоторые задатки аналитического мышления. Во всяком случае, у меня сложилось такое впечатление в отношении дельфинов, о чем я писал в своей книге «Космическая связь».

    С этими оговорками можно тем не менее в первом приближении считать, что ритуальный и иерархический аспекты нашей жизни находятся под сильным влиянием Р-комплекса и общи для нас и наших предков-рептилий; что альтруистический, эмоциональный и религиозный аспекты нашей жизни в значительной мере управляются лимбической системой и общи для нас и наших предков - млекопитающих-неприматов (а возможно, и птиц); что разум - это функция новых областей коры головного мозга, неокортекса, которая в какой-то мере общая у нас и у высших приматов, а также у таких китообразных, как дельфины и кашалоты. Ритуалы, эмоции и рассуждения - все это важные признаки человеческого в человеке, но еще более важно то, что только человек умеет мыслить абстрактно. Мы любознательны, постоянно делаем что-то для удовлетворения каких-либо своих насущных потребностей, но опять-таки к самым человеческим формам деятельности относятся занятия наукой, техникой, музыкой и живописью. Круг специфически человеческих занятий гораздо шире того, который мы по привычке обозначаем словом «гуманитарные», сужая тем самым взгляд на то, что является истинно человеческим. Если этого не учитывать, то человеческое можно найти у китов и слонов.

    Модель триединого мозга основана на данных сравнительной нейроанатомии и изучении поведения. Но людям не чуждо и стремление честно заглянуть внутрь самих себя, а потому, если модель триединого мозга верна, мы можем надеяться найти некоторые намеки на ее правильность в истории человеческого самопознания. Самая известная из гипотез, которая в чем-то напоминает идею триединого мозга, - это придуманное Зигмундом Фрейдом разделение человеческой психики на Ид, Эго и Суперэго. Те аспекты Р-комплекса, что связаны с агрессивностью и сексуальностью, вполне удовлетворительно соответствуют данному Фрейдом определению Ид (по-латыни значит «оно», то есть обозначает животный аспект нашей натуры), но, насколько я знаю, в своем описании Ид Фрейд не говорил о ритуальном и социально-иерархическом аспектах Р-комплекса. Он считал эмоции функцией Эго, в частности «океанического опыта» - фрейдистского эквивалента религиозному прозрению. Однако Супер-эго первоначально был описан не как вместилище абстрактного мышления, а как хранилище структур, связанных с понятиями «социум» и «семья», что в модели триединого мозга скорее уже относится к Р-комплексу. Таким образом, психоаналитическая идея о делении человеческой психики на три части находится лишь в слабом соответствии с моделью триединого мозга.

    Быть может, более подходящая метафора - фрейдистское деление психики на сознательное, подсознательное (которое скрыто, но может выйти наружу) и бессознательное (которое подавляется или недоступно). Когда Фрейд говорил, что «склонность человека к неврозам является обратной стороной его склонности к культурному развитию», он имел в виду сложности в отношениях, которые существуют между тремя компонентами человеческой души. Он называл бессознательные функции «первичными процессами».

    Но самую точную по совпадению внутреннего мира метафору человека мы обнаруживаем в Платоновой диалоге «Федр». Там Сократ уподобляет душу колеснице, влекомой двумя лошадьми, черной и белой, которые тянут ее в противоположных направлениях и плохо подчиняются вознице. Колесница очень напоминает нейрошасси Мак-Лина, две лошади - Р-комплекс и лимбическую кору, а возничий, едва способный управлять накренившейся колесницей и лошадьми, - неокортекс. Еще одна метафора Фрейда описывает Эго как наездника на непокорной лошади. Обе метафоры, и Фрейда и Платона, подчеркивают определенную самостоятельность частей души, а также напряженность их отношений между собой. Все это характерно для человека, и мы к этому еще вернемся. Вследствие того, что между тремя его компонентами существуют нейроанатомические связи, сам триединый мозг, подобно колеснице из платоновского «Федра», нужно считать метафорой. Но эта метафора может оказаться глубокой и полезной.

    Примечания:

    Джекоб Броновски - популяризатор науки и литературовед, поляк по происхождению. Учился в Кембридже, преподавал в университетах, читал курс лекций в Массачусетском технологическом институте. Из книг, обращенных к массовому читателю, наиболее известны «Наука и человеческие ценности», «Восхождение Человека» (по этой книге была сделана серия популярных телевизионных передач, о них и говорит К. Саган). - Перев.

    Однако «творческая роль» естественного отбора проявляется в преобразовании популяций, в результате которого и рождается новый вид. - Перев.

    Вопрос о природе (сущности) человека может быть правильно понят лишь с учетом всего, что знает современная наука о человеке и как о живом существе, и как о субъекте общественно-исторической деятельности. Это один из основных вопросов философии. См.: Маркс К. и Энгельс Ф. Соч., т. 3; Проблема человека в современной философии. Сб. М., 1969; Мысливченко А. Г. Человек как предмет философского познания. М., 1972; Соотношение биологического и социального в человеке. Сб. М., 1975; Дубинин II. П. Что такое человек. М., 1983; Фролов И. Т. На пути к единой науке о человеке. - Природа, 1985, № 8; Послесловие Д. А. Поспелова к данной книге. - Перев.

    Изложенная здесь концепция триединого мозга занимает в современной нейробиологии довольно скромное место и разделяется далеко не всеми учеными. Вместе с тем идея иерархической организации мозга имеет надежную научную основу. - Прим. редакции.

    Это правило, касающееся различий в родительской заботе у млекопитающих и рептилий, не обходится без исключений. Заботливая мамаша нильская крокодилиха прячет в пасти своих только что вылупившихся крошек и переносит их в относительно безопасное место реки, а вот лев в Серенгети, как только достигает доминирующего положения, сразу же уничтожает всю наличную молодь. Но в целом млекопитающие проявляют куда большую заботу о своих детях, нежели рептилии. Не исключено, что это различие было еще более ярко выражено сто миллионов лет назад.

    Головы и туловища членистоногих некоторое время могут отлично обходиться друг без друга. Самка богомола в ответ на серьезное ухаживание часто в буквальном смысле лишает своего поклонника головы. В человеческом обществе такое поведение считалось бы асоциальным, но у насекомых оно в порядке вещей. Удаление мозга снимает сексуальные запреты и побуждает то, что осталось от самца, к спариванию. После этого самка завершает торжество трапезой в одиночку.

    Поллианна - героиня одноименной повести Э. Портер, ее имя стало нарицательным, оно служит синонимом неисправимой оптимистки, глядящей на жизнь сквозь розовые очки. Кассандра - но греческой мифологии, дочь царя Трои Приама, прорицательница. Это она предостерегала царевича Париса от похищения Елены, жены царя Спарты Менелая, но по наущению Аполлона ее предостережениям не вняли, из-за чего и началась Троянская война. - Перев.

    И в самом деле, есть немало медицинских данных, указывающих на связь между кровоснабжением и интеллектуальными способностями. Давно было известно, что пациенты, на несколько минут лишенные кислорода, испытывали иногда постоянные и серьезные умственные расстройства. Операции по удалению закупорки сонной артерии часто приносили неожиданную пользу: согласно одному исследованию, через шесть недель после такой операции коэффициент интеллектуальности пациента повысился в среднем на восемнадцать единиц, что представляет собой существенное улучшение. Обсуждался также вопрос о том, что умственное развитие младенцев улучшается при гипербарической оксигенизации, то есть когда их помещают в барокамеры с повышенным давлением кислорода.