Механизмы неспецифической резистентности. Резистентность и факторы защиты

Для удобства изучения целесообразно условно разделить все факторы и механизмы естественной резистентности на общие, клеточные (тканевые) и гуморальные.
Среди общих механизмов, играющих важную роль в защите от инфекции, необходимо назвать следующие:

  1. характер общей реактивности организма. Последняя может быть нормальной, повышенной, пониженной, вплоть до полной ареактивности. Эти особенности в каждом конкретном случае по-разному влияют на восприимчивость к инфекции и развитие инфекционного процесса;
  2. воспалительная реакция, способствующая ограничению и ликвидации очага инфекции;
  3. температурная реакция, в ряде случаев инактивирующая возбудителей инфекции. Известно, например, что репродукция некоторых вирусов задерживается при температуре выше 37 °С;
  4. изменение обмена веществ и pH тканей в сторону, неблагоприятную для возбудителя;
  5. возбуждение или торможение соответствующих отделов ЦНС;
  6. секреторная и экскреторная функции организма: выделение микроорганизмов с мочой, мокротой при кашле и т. д.;
  7. защитное влияние нормальной микрофлоры организма.
Клеточные (тканевые) факторы и механизмы естественной резистентности обеспечивают защиту от проникновения возбудителя во внутреннюю среду и уничтожение его внутри организма. К ним относятся: 1) кожа, которая является прочным механическим барьером, препятствующим проникновению микробов внутрь организма. Удаление микробов с поверхности кожи происходит при отторжении ороговевших слоев эпидермиса, с экскретом сальных и потовых желез. Кожа представляет собой не только механический барьер, но обладает и бактерицидными свойствами, обусловленными действием молочной и жирных кислот, ферментами, выделяемыми потовыми и сальными железами, а также содержащимся в потовых железах секреторным иммуноглобулином класса А; 2) слизистые оболочки носоглотки, дыхательных путей, желудочно-кишечного тракта осуществляют более сложную функцию. Кроме механической защиты, очень выражено их бактерицидное действие, которое связано с наличием в секрете особого фермента - лизоцима, секреторного иммуноглобулина А, альвеолярных макрофагов, а у слизистых оболочек желудочно-кишечного тракта - еще и действием соляной кислоты, ферментов; 3) барьерная функция лимфатического аппарата, ограничивающая распространение возбудителя из очага инфекции. У новорожденных детей в связи с функциональной слабостью лимфатического аппарата наблюдается склонность к генерализации инфекции; 4) фагоцитоз - важнейшая клеточная защитная реакция. Клетки организма, участвующие в фагоцитозе, были названы фагоцитами. Фагоцитирующие клетки организма делятся на макрофаги и микрофаги. Макрофаги по классификации ВОЗ (1972) объединены в мононуклеарную фагоцитарную систему (МФС), куда отнесены клетки костномозгового происхождения, обладающие активной подвижностью, способностью прилипать к стеклу и интенсивно осуществлять фагоцитоз. В эту группу входят: промоноциты костного мозга, моноциты крови, макрофаги (к которым относятся гистиоциты), звездчатые ретикулоэндотелиоциты (купферов- ские клетки печени), свободные и фиксированные макрофаги селезенки, лимфатических узлов, серозных полостей.
Процесс фагоцитоза представляется достаточно сложным и состоит из нескольких фаз. Первая фаза - активное движение фагоцита к чужеродным частицам - хемотаксис, которое осуществляется с помощью псевдоподий, состоящих из гнал оплазмы, в ответ на возбуждение клетки чужеродными агентами (бактерии, простейшие, их продукты, токсины и т. п.). Перед началом движения в клетке отмечается усиление процессов гликолиза. Хемотаксис активизируется компонентами комплемента (СЗ, С5, С6), а также действием лимфокинов, сериновой эстеразы, ионов кальция и магния, продуктов расщепления, коагулированных альбуминов и различных компонентов мембран клетки в воспалительном очаге.
Эти факторы активируют также ферменты лизосом фагоцитов. Лизосомы - это внутриклеточные гранулы, ограниченные цитоплазматической мембраной и содержащие набор ферментов, служащих для внутриклеточного переваривания объектов фагоцитоза. Независимо от лизосомальных ферментов сами фагоцитирующие клетки выделяют наружу ряд веществ ферментной природы, таких как глюкуронидаза, мие- лопероксидаза, кислая фосфатаза, которые инактивируют бактерии уже на поверхности клетки. Вторая фаза - прилипание (аттракция) фагоцитируемой частицы к поверхности фагоцита. После нее начинается третья фаза - поглощение, когда на месте соприкосновения фагоцита с чужеродной частицей образуется фагосома, окружающая объект фагоцитоза, которая втягивается затем внутрь клетки.
Микроорганизмы, находящиеся в фагосоме, погибают под действием бактерицидных веществ клетки (лизоцима, перекиси водорода), а также в результате избытка молочной кислоты и изменений pH, возникающих в фагоците в результате усиления анаэробного гликолиза (pH 6,0). После этого начинается четвертая фаза - переваривание, при которой фагосома с микробами сливается с лизосомой и образуется фаголи- зосома (пищеварительная вакуоль). В ней происходит расщепление фагоцитированного объекта с помощью набора лизосомальных ферментов.
Гуморальные факторы неспецифической резистентности, как показывает само название, содержатся в жидкостях организма (слезы, слюна, грудное молоко, сыворотка крови). К ним в настоящее время относят: комплемент, лизоцим, р-ли- зины, систему пропердина, лейкины, плакины, гистоген, интерферон, нормальные антитела и др. Остановимся на некоторых из них.
Комплемент (от латинского слова complementum - дополнение) - сложный по строению белок, состоящий из 11 компонентов - сывороточных глобулинов, продуцируемых макрофагами печени, селезенки, костного мозга, легких. Это дополнительный литический фактор, участвующий в разрушении чужеродных агентов. Комплемент принято обозначать буквой С, отдельные его компоненты - дополнительно арабскими цифрами (Cl, С2 и т. д.). В сыворотке крови и тканевых жидкостях компоненты комплемента находятся в неактивном состоянии и не связаны друг с другом. Активация системы комплемента начинается после образования иммунного комплекса антиген - антитело. В организме комплемент обладает большим диапазоном биологического действия. Число известных реакций, протекающих с участием комплемента, непрерывно возрастает. Например, компонент СЗ обладает значительными опсонизирующими свойствами, способствуя фагоцитозу бактерий; С5 играет ведущую роль в хемотаксисе и способствует инфильтрации нейтрофилов в очаге воспаления и т. д.
Лизоцим - это фермент, вызываемый также мурамидазой, широко распространен в природе и содержится в клетках и жидкостях разнообразных организмов. Он обнаружен в относительно высоких концентрациях в яичном белке, в сыворотке крови человека, слезной жидкости, слюне, мокроте, секрете носовых полостей и т. д. Антимикробное действие лизоцима связано с его способностью расщеплять гликозифазные связи в молекуле муреина, входящего в состав клеточной стенки микроорганизмов.
Р-Лизины - один из бактерицидных факторов неспецифической резистентности и играет большую роль в естественной защите организма от микробов, р-Лизины найдены в сыворотке крови человека и многих животных, их происхождение связано с тромбоцитами. Губительно они действуют на грамположительные бациллы, в частности антракоиды.
Пропердин представляет особый белок сыворотки у теплокровных животных и человека. Его бактерицидное действие проявляется в комплексе с комплементом и ионами магния.
Лейкины - вещества, выделенные из лейкоцитов, обнаружены в сыворотке крови в незначительных количествах, однако оказывают выраженное бактерицидное действие.
Аналогичные вещества были выделены из тромбоцитов и названы плакинами.
Кроме этих субстанций, в крови и жидкостях организма обнаружены другие вещества, получившие название ингибиторов. Они задерживают рост и развитие микроорганизмов, главным образом вирусов.
Интерферон - низкомолекулярный белок, вырабатываемый клетками тканей с целью подавления репродукции вируса внутри клетки.
Таким образом, гуморальные факторы иммунитета довольно многообразны. В организме они действуют сочетанно, оказывая бактерицидное и ингибирующее действие на различные микробы.
Основные механизмы неспецифической резистентности развиваются постепенно, и показатели, характеризующие их, достигают средней нормы взрослых в разные сроки. Так, суммарная бактерицидная активность сыворотки крови у ребенка первых дней жизни очень низкая, но сравнительно быстро, к концу 2-4-й недели, достигает обычной нормы.
Комплементарная активность в первые дни рождения очень низка. Однако содержание комплемента быстро увеличивается и уже на 2-4-й неделе жизни нередко достигает уровня взрослых. Содержание р-лизинов и пропердина на ранних этапах онтогенеза также снижено, достигая средних норм взрослого к 2-3 годам.
У новорожденных отмечается низкое содержание лизоцима и нормальных антител, которые в основном являются материнскими и поступают в организм ребенка трансплацентарно. Таким образом, можно заключить, что у детей раннего возраста активность гуморальных факторов защиты понижена.
Развитие клеточных механизмов защиты также имеет возрастные особенности. Фагоцитарная реакция у новорожденных детей слабая. Она характеризуется инертностью фазы захвата, которая тем более растянута, чем меньше ребенок. Так, скорость поглощения лейкоцитами бактерий у детей первых б мес жизни в несколько раз меньше, чем у взрослых. Завершенность фагоцитоза менее выражена. Этому способствует и слабая опсонизирующая активность сыворотки крови. Эмбрионы млекопитающих и человека имеют низкую чувствительность (толерантность), к чужеродным веществам, токсинам бактерий. Исключение составляет стафилококковый токсин, к которому очень высоко чувствительны новорожденные дети. Отчасти с этими особенностями связано ослабление воспалительной реакции, которая либо совсем не возникает, либо выражена очень слабо.
Иммунологическая реактивность организма. Антигены. Известны следующие основные формы реакций организма, из которых складывается иммунологическая реактивность: продукция антител, гиперчувствительность немедленного типа, ги- перчувствительностъ замедленного типа, иммунологическая память и иммунологическая толерантность.
Пусковым моментом, включающим систему иммунологических реакций, является встреча организма с веществом антигенной природы - антигеном.
Антигенами по отношению к данному организму являются все те вещества, которые несут признаки генетически чужеродной информации и при введении в организм вызывают развитие специфических иммунологических реакций. Для организма человека в высшей степени чужеродными являются биохимические продукты микробов и вирусов. Необходимым условием антигенности является макромолекулярность. Как правило, вещества с молекулярной массой меньше 3000 не являются антигенами.
Чем крупнее молекулы, тем сильнее, при прочих равных условиях, антигенные свойства вещества.
Антитела. Основу иммунологической реактивности составляет сложный комплекс иммунологических реакций организма, которые до известной степени условно принято делить на реакции клеточные и гуморальные. Как говорят сами термины, в основе клеточных реакций лежит активное реагирование иммунокомпетентных клеток в ответ на антигенное раздражение.
К гуморальным реакциям относятся те, в которых основным фактором служат антитела, циркулирующие в жидких средах организма.
Согласно определению специального комитета ВОЗ, к антителам относятся белки животного происхождения, образуемые в организме позвоночных клетками лимфоидных органов при введении антигенов и обладающие способностью вступать с ними в специфическую связь.
В 1930 г. было установлено, что антитела представляют собой у-глобулины, по своим свойствам идентичные другим глобулинам, но отличающиеся от них способностью специфически соединяться с соответствующим антигеном.
В настоящее время антитела принято называть иммуноглобулинами (Ig). Известно 5 классов иммуноглобулинов: IgM, IgG, IgA, IgE, IgD с молекулярной массой от 150 000 до 900 000.
Как в филогенетическом, так и в онтогенетическом отношении наиболее ранней и менее специализированной формой антител является IgM. У плода и новорожденных синтезируются преимущественно IgM; кроме того, первичный иммунный ответ также начинается с синтеза иммуноглобулинов этого класса. Это наиболее крупномолекулярный глобулин с молекулярной массой 900 000. Благодаря своей макромолекуляр- ности этот глобулин не проходит через плаценту. Общее количество IgM в сыворотке крови здоровых людей составляет 5-10 % от всех иммуноглобулинов. Содержание IgM значительно повышено у новорожденных детей, перенесших внутриутробно инфекцию.
IgG является основным классом иммуноглобулинов и составляет 70 % всех иммуноглобулинов сыворотки крови. Это «стандартное» антитело млекопитающих, молекулярная масса его 150 000, имеет два центра связывания. В более значительных количествах синтезируется на вторичный антигенный стимул, связывает уже не только корпускулярные, но и растворимые антигены, например экзотоксины микробов. Связывающая способность молекул этого иммуноглобулина в тысячи раз сильнее, чем у IgM. Легко проникает через плаценту, участвуя в иммунологической защите плода и новорожденного. Иммуноглобулины G обладают способностью нейтрализовать многие вирусы, бактерии, токсины, оказывают опсонизи- рующее действие на бактерии. Важной особенностью их является более выраженная, чем у IgM, способность соединяться с гаптенами и полугаптенами, что обеспечивает более высокую специфичность соединения антигена с антителом.
IgA составляет 15-20 % от всех глобулинов. Молекулярная масса - 170 000 или 340 000, в зависимости от вида молекулы. Имеет два вида молекул IgA: сывороточный иммуноглобулин является мономером, молекула которого напоминает IgA. Секреторный глобулин представляет собой полимерную молекулу, как бы удвоенный сывороточный IgA. Он отличается от сывороточного иммуноглобулина. Продуцируется плазматическими клетками слизистых оболочек верхних дыхательных путей, мочеполового и желудочно-кишечного тракта. Содержит особый секреторный или транспортный компонент (S или Т), который синтезируется эпителиальными клетками слизистых желез и присоединяется к молекуле IgA в момент ее прохождения через эпителиальные клетки слизистых. Этот компонент обеспечивает проникновение IgA через слизистые оболочки. Он обнаруживается в свободном состоянии в кишечном содержимом, слюне, секрете дыхательных путей и мочеполового тракта. Секреторный IgA оказывает антивирусное и антибактериальное действие на патогенную флору слизистых оболочек. Особенно велика его защитная роль в материнском молоке. Поступая с молоком матери в желудочно- кишечный тракт ребенка, он защищает слизистую оболочку от проникновения патогенных микроорганизмов. Содержание этого глобулина возрастает у кормящих женщин более чем в 5 раз. Устойчивость слизистых оболочек к инфекции во многом определяется содержанием IgA в секретах слизистых оболочек. У лиц со сниженным содержанием IgA наблюдаются частые простудные заболевания.
IgE - белок с молекулярной массой 200 000, содержится в сыворотке крови в незначительных количествах, менее 1 % от всех иммуноглобулинов. Обладает способностью быстро фиксироваться тканями человека, особенно клетками кожи и слизистых оболочек. В больших количествах обнаруживается у лиц, страдающих аллергиями. При этом антитела класса IgE вырабатываются против веществ со слабыми антигенными свойствами, к которым у нормально реагирующих людей антитела не образуются. Эти антитела называются реагинами. В отличие от других антител они не предипитируют специфический антиген, не связывают комплемент, не проходят через плаценту.
IgD имеют молекулярную массу около 200 000. Присутствуют в сыворотке крови в очень незначительных количествах, не превышающих 1 % по отношению ко всем остальным иммуноглобулинам. Их роль в организме недостаточно выяснена.
Синтез иммуноглобулинов в организме осуществляется им- мунокомпетентными клетками лимфоцитарного ряда, которые трансформируются в плазматические клетки. Это высокоспециализированные клеточные элементы, структура которых обеспечивает выполнение их главной функции - синтез больших количеств белка. В секунду клетка может продуцировать 1000-1500 молекул антител.
Нарушения продукции антител могут быть врожденными и приобретенными. В первом случае мы имеем дело с генетически обусловленной врожденной агаммаглобулинемией, которая характеризуется резко пониженным содержанием иммуноглобулинов или их отсутствием. Приобретенная агаммагло- булинемия возникает в результате повреждения какого-либо из звеньев иммунной системы, ответственной за продукцию антител. Это может быть результатом тяжелой болезни, воздействия экстремальных факторов и т. д.

Факторы неспецифической резистентности

Неспецифическая резистентность осуществляется клеточными и гуморальными факторами, тесно взаимодействующими в достижении конечного эффекта - катаболизма чужеродной субстанции: макрофагами, нейтрофилами, комплементом и другими клетками и растворимыми факторами. К гуморальным факторам неспецифической резистентности принадлежат лейкины - вещества, полученные из нейтрофилов, проявляющие бактерицидное действие в отношении ряда бактерий; эритрин - вещество, полученное из эритроцитов, бактерицидное в отношении дифтерийной палочки; лизоцим - фермент, продуцируемый моноцитами, макрофагами, лизирует бактерии; пропердин - белок, обеспечивающий бактерицидные, вируснейтрализующие свойства сыворотки крови; бетта-лизины - бактерицидные факторы сыворотки крови, выделяемые тромбоцитами. Факторами неспецифической резистентности также являются кожа и слизистые оболочки организма - первая линия защиты, где вырабатываются вещества, оказывающие бактерицидное действие. Также подавляют рост и размножение микробов слюна, желудочный сок, пищеварительные ферменты. В 1957 году английский вирусолог Айзекс и швейцарский вирусолог Лин-денманн, изучая явление взаимного подавления (интерференции) вирусов в куриных эмбрионах, опровергли связь процесса интерференции с конкуренцией между вирусами. Оказалось, что интерференция обусловлена формированием в клетках конкретного низкомолекулярного белкового вещества, которое удалось выделить в чистом виде. Ученые назвали этот белок интерфероном (ИФН), поскольку он подавлял репродукцию вирусов, создавая в клетках состояние резистентности к их последующему реинфицированию. Интерферон образуется в клетках в ходе вирусной инфекции и обладает хорошо выраженной видовой специфичностью, то есть проявляет свое действие только в том организме, в клетках которого образовался. При встрече организма с вирусной инфекцией именно продукция интерферона является наиболее быстрой ответной реакцией на заражение. Интерферон формирует защитный барьер на пути вирусов намного раньше специфических защитных реакций иммунитета, стимулируя клеточную резистентность, делает клетки непригодными для размножения вирусов. В 1980 году Комитетом экспертов ВОЗ была принята и рекомендована новая классификация, согласно которой все интерфероны человека разделяются на три класса: - альфа-интерферон (лейкоцитарный) - основной препарат для лечения вирусных и раковых заболеваний. Получают его в культуре лейкоцитов крови доноров, используя в качестве интерфероногенов вирусы, не представляющие опасности для людей (вирус Сендай); - бета-интерферон - фибробластный, продуцируется фибробластами, у этого типа интерферона противоопухолевая активность превалирует над противовирусной; - гамма-интерферон - иммунный, вырабатывается сенсибилизированными лимфоцитами Т-типа при повторной встрече с "известным" им антигеном, а также при стимуляции лейкоцитов (лимфоцитов) митогенами - ФГА и другими лек-тинами. Обладает выраженным иммуномодулирующим действием. Все интерфероны отличаются друг от друга по набору аминокислот и антигенным свойствам, а также по выраженности тех или иных форм биологической активности. Описаны следующие свойства интерферонов: антивирусные, имму-номодулирующие, противоопухолевые; помимо этого интерфероны подавляют рост клеток, изменяют проницаемость клеточных мембран, активируют макрофаги, усиливают цитотоксичность лимфоцитов, активируют последующий синтез интерферона, а также обладают "гормоноподобной" активацией жизнедеятельности клеток. Во всех звеньях взаимодействия компонентов иммунной системы как на уровне образования, активации и проявления их функций остается много белых пятен для того, чтобы создать рабочую схему действия иммунной системы и на этой основе прогнозировать развитие дальнейших событий в организме.

Активные неспецифические механизмы поддержания антигенно-структурного гомеостаза вместе с пассивными являются первым рубежом обороны внутренней среды организма от чужеродных антигенов. Эти механизмы представлены сложным комплексом факторов - морфологических, биохимических, общефизиологических. Способность к их функционированию передастся по наследству от родителей, однако потенциальный максимум этих функций - показатель индивидуальный. Это и определяет неодинаковую степень у различных индивидуумов.

К неспецифической резистентности относят гуморальные и клеточные факторы защиты. Неспецифическая резистентность стереотипна. Она не дифференцирует антигены, имеет фазный характер, что связано с регуляцией ее со стороны нервной и эндокринной систем.

К гуморальным факторам относят: комплемент, интерфероны, лизоцим, бета-лизины и клеточные факторы: нейтрофильные лейкоциты (микрофаги).

Основным гуморальным фактором песпецифической резистентности является комплемент - сложный комплекс белков сыворотки крови (около 20), которые участвуют в уничтожении чужеродных антигенов, активации свертывания, образовании кининов. Для комплемента характерно формирование быстрого, многократно усиливающегося ответа на первичный сигнал за счет каскадного процесса. Активироваться комплемент может двумя путями: классическим и альтернативным. В первом случае активация происходит за счет присоединения к иммунному комплексу (антиген-антитело), а во втором - за счет присоединения к липополисахаридам клеточной стенки микроорганимов, а также эндотоксину. Независимо от путей активации происходит образование мембранатакующего комплекса белков комплемента, разрушающего антиген.

Вторым и не менее важным фактором, является интерферон . Он бывает альфа-лейкоцитарный, бета-фиброластный и гамма-интерферониммунный. Вырабатываются они соответственно лейкоцитами, фибробластами и лимфоцитами. Первые два вырабатываются постоянно, а гамма-интерферон - только в случае попадания вируса в организм.

Кроме комплемента и интерферонов, к гуморальным факторам относятся лизоцим и бета-лизины . Суть действия данных веществ заключается в том, что, являясь ферментами, они специфически разрушают липополисахаридные последовательности в составе клеточной стенки микроорганизмов. Отличие бета-лизинов от лизоцима заключается в том, что они вырабатываются в стрессорных ситуациях. Кроме указанных веществ, к этой группе относятся: С-реактивный белок, белки острой фазы, лактоферрин, пропердин и др.

Неспецифическая клеточная резистентность обеспечивается фагоцитами: макрофагами - моноцитами и микрофагами - нейтрофилами.

Для обеспечения фагоцитоза эти клетки наделены тремя свойствами:

    Хемотаксисом - направленным движением к объекту фагоцитоза;

    Адгезивностью - способностью фиксироваться на объекте фагоцитоза;

    Биоцидностью - способностью переваривать объект фагоцитоза.

Последнее свойство обеспечивается двумя механизмами - кислородзависимым и кислороднезависимым. Кисло-родзависимый механизм связан с активацией мембранных ферментов (НАД-оксидазы и др.) и выработкой биоцидных свободных радикалов, которые возникают из глюкозы и кислорода на специальном цитохроме В-245. Кислороднезависимый механизм связан с белками лизосом, закладывающихся в костном мозге. Только сочетание обоих механизмов обеспечивает полное переваривание объекта фагоцитоза.

Н е с п е ц и ф и ч е с к и е ф а к т о р ы з а щ и т ы

Механические, физические и гуморальные факторы неспецифической резистентности организма.

Главными механическими барьерами зашиты являются кожа и слизистые оболочки. Здоровая кожа наряду с механической барьерной функцией обладает выраженными бактерицидными свойствами, обусловленными наличием нормальной микрофлоры на её поверхности. Определение степени бактерицидности кожи широко применяется в гигиенических и клинических исследованиях.

Неспецифические факторы защиты слизистых оболочек те же, что и у кожи, например кислая реакция (рН) желудочного сока (ниже 3), влагалища (4-4,5). Кроме того, клетки слизистых оболочек содержат лизоцим и секреторный иммуноглобулин класса А (SIgA), играющие важную роль в устойчивости кишечника, респираторных и мочеполовых путей к повреждающим агентам.

К механическим факторам относятся физиологические и патологические процессы, обеспечивающие удаление патогенных микроорганизмов, кашель, повышенное слизеотделение, чихание, рвота, потоотделение и др. Физическими фактором саногенеза, мобилизующим защитные реакции организма, является повышение температуры тела, наблюдаемое при многих заболеваниях.

Особое место среди неспецифических факторов защиты принадлежит фагоцитозу. К гуморальным неспецифическим факторам защиты относятся естественные антитела, комплемент, лизоцим, пропердин, бета-лизины, лейкины, интерферон, ингибиторы вирусов и другие вещества, постоянно присутствующие в сыворотке крови, секретах слизистых оболочек и тканях организма.

Значительную роль в обеспечении неспецифической резистентности организма играют также гормоны коры надпочечников (глюко- и минералокортикоиды).

Фагоцитоз - процесс поглощения, разрушения и выделения из организма патогенов.

В человеческом организме ответственными за него являются моноциты и нейтрофилы.

Процесс фагоцитоза бывает завершенным и незавершенным.

Завершенный фагоцито з состоит из следующих стадий: активация фагоцитирующей клетки; хемотаксис или движение к фагоцитируемому объекту; прикрепление к данному объекту (адгезия); поглощение этого объекта; переваривание поглощенного объекта.

Незавершенный фагоцитоз прерывается на стадии поглощения, при этом патоген остается живым.

Стадии фагоцитоза

В процессе фагоцитоза образуются следующие структуры:

    фагосома – образуется после прикрепления фагоцита к объекту путем замыкания его мембраны вокруг патогена;

    фаголизосома – образуется в результате слияния фагосомы с лизосомой фагоцитирующей клетки. После ее образования начинается процесс переваривания.

Вещества из лизосомальных гранул (гидролитические ферменты, щелочная фосфатаза, миелопероксидаза, лизоцим) могут разрушать чужеродные вещества двумя механизмами:

    кислороднезависимый механизм -осуществляется гидролитическими ферментами;

    кислородзависимый механизм - осуществляется при участии миелопероксидазы, перекиси водорода, супероксидного аниона, активного кислорода и гидроксильных радикалов.

Комплемент: краткое определение

Комплементом называют сложный комплекс белков, действующий совместно для удаления внеклеточных форм патогена; система активируется спонтанно определенными патогенами или комплексом антиген:антитело. Активированные белки либо непосредственно разрушают патоген (киллерное действие), либо обеспечивают лучшее их поглощение фагоцитами (опсонизирующее действие ); либо выполняют функцию хемотаксических факторов , привлекая в зону проникновения патогена клетки воспаления .

Комплекс белков комплемента формирует каскадные системы, обнаруженные в плазме крови. Для этих систем характерно формирование быстрого, многократно усиленного ответа на первичный сигнал за счет каскадного процесса. В этом случае продукт одной реакции служит катализатором последующей, что в конечном итоге приводит к лизису клетки или микроорганизма.

Существует два главных пути (механизма) активации комплемента - классический и альтернативный.

Классический путь активации комплемента инициируется взаимодействием компонента комплемента С1q с иммунными комплексами ( антителами , связанными с поверхностными антигенами бактериальной клетки); в результате последующего развития каскада реакций образуются белки с цитолитической (киллерной) активностью, опсонины , хемоаттрактанты . Такой механизм соединяет приобретенный иммунитет (антитела) с врожденным иммунитетом (комплемент).

Альтернативный путь активации комплемента инициируется взаимодействием компонента комплемента С3b с поверхностью бактериальной клетки; активация происходит без участия антител. Данный путь активации комплемента относится к факторам врожденного иммунитета.

В целом система комплемента относится к основным системам врожденного иммунитета , функция которых состоит в том, чтобы отличить "свое" от "не своего". Эта дифференциация в системе комплемента осуществляется благодаря присутствию на собственных клетках организма регуляторных молекул, подавляющих активацию комплемента.

C-белки системы комплемента

Все белки классического пути активации комплемента и белки имеют буквенное обозначение "C" и арабскую цифру, отражающую последовательность открытия белка, но не последовательность его включения в реакцию. Реакционная последовательность представляет следующий ряд:

C1 , C1q , C1r , C1s , C4

Заметим, что при расщеплении компонентов системы комплемента большему продукту присваивается символ "b", а меньшему - символ "a". Из этого правила есть одно исключение:C2b означает меньший, а C2a - больший фрагмент.

Среди этих белков них много предшественников ферментов - проферментов, которые приобретают активность только после расщепления. Обозначение активного фермента отличается от обозначения его неактивного предшественника обычно надбуквенной чертой, а в данном обзоре - волнистой, например: C1r~.

Белок C1 построен из 5 молекул: одной C1q , двух C1r и двух C1s ( рис. 9.22 ). Пары молекул C1r и C1s располагаются поперек молекулы C1q. Соединение этих молекул зависит от ионов кальция.

С1q состоит из шести идентичных субъединиц, конформационно напоминающих булаву с коллагеноподобной рукоятью.

Взаимодействие С1q с иммунными комплексами приводит к активации комплемента.

C1s содержит участки аминокислотной последовательности из сериновой эстеразы и рецептора липопротеинов низкой плотности, а также короткий общий повтор, встречающийся в суперсемействе регуляторных белков комплемента .

Наиболее важным компонентом системы комплемента является C3 , присутствующий в плазме крови в той же концентрации (1-2 мг/мл), что и некоторые иммуноглобулины .

C3- это бетаглобулин с мол. массой равной 195 кД, секретируется (как про-С3) макрофагами .

C3 постоянно расщепляется на C3а и C3b . Внутренняя тиоэфирная связь в нативной молекуле C3 чувствительна к спонтанному гидролизу. Эта постоянная, происходящая на низком уровне самопроизвольная активация C3 в плазме называется "холостой", и она поддерживает в плазме крови небольшую концентрацию C3b.

Расщепление C3 на C3a и C3b ( C3-конвертазой в процессе активации системы) является центральным моментом любого из каскадов комплемента.

C4 (C4-bp - binding protein) - гептамерный белок плазмы, молекула которого имеет паукообразную форму; относится к суперсемейству регуляторных белков комплемента .

Каскад всех реакций активации комплемента завершается образованием лизирующего (атакующего) мембрану комплекса (ЛМК) .

Первый этап образования комплекса - это ферментативное расщепление C5-белка комплемента. Белок C5 гомологичен белкам C3 и C4, но не содержит внутренней тиоэфирной связи. Прежде чем подвергнуться расщеплению C5-конвертазой , белок C5 избирательно связывается с C3b , который находится в составе конвертазы.

При расщеплении C5 высвобождаются небольшой фрагмент C5a и фрагмент C5b . C5a является высокоактивным анафилатоксином . С фрагмента C5b начинается следующий этап формирования ЛМК.

C6 , C7 , C8 и C9 - компоненты лизирующего мембрану комплекса , свойства которых аналогичны перфорину цитотоксических T-клеток и катионному белку эозинофилов .

Опсонины

Опсонины, связываются с клетками-мишенями и облегчают их фагоцитоз .

Нейтрализация антигенов представляет собой лишь начальный этап освобождения организма от патогенов. Следующий, наиболее результативный этап связан с опсонизацией корпускулярных или растворимых антигенов, их захватом фагоцитирующими или иными иммунологически активными клетками и внутриклеточным разрушением патогенов. Процесс усиления фагоцитоза за счет гуморальных факторов вообще (например, белков комплемента ) и специфическихантител в частности получил название опсонизации .

Хемокины (Хемотаксические молекулы)

Важный класс провоспалительных цитокинов, необходимых для активации нейтрофилов и моноцитов и привлечения этих клеток в очаг воспаления, составляют хемокины (хемотаксические цитокины). Источником этих небольших белков служат эндотелиальные иэпителиальные клетки , фибробласты , нейтрофилы и моноциты . Хемокины действуют черезрецепторы, состоящие из семи трансмембранных доменов и сопряженные с G-белками . Рецепторы хемокинов относятся к тому же типу поверхностных рецепторов, что и рецепторы классических хемоаттрактантов - трипептида формилметионил-лейцил-фенилаланина и фрагмента компонента комплемента С5а .

Выделяют два основных класса хемокинов: альфа-хемокины (например, ИЛ-8 ) и бета-хемокины (например, макрофагальный воспалительный белок 1альфа ). Альфа-хемокины опосредуют преимущественно хемотаксис нейтрофилов, бета-хемокины - хемотаксис моноцитов и лимфоцитов. Многие из сигнальных молекул обладают хемотаксическими свойствами , в том числе это C5a , лейкотриен B4 и разнообразные низкомолекулярные цитокины . Эта группа цитокинов получила общее название " хемокины ". Это семейство белков длиной около 100 аминокислот, синтезируемые в различных тканях [ Baggiolini, ea 1998 ]. Хемокины содержат четыре консервативных цистеина, связанных дисульфидными мостиками. В зависимости от того, разделены первые два консервативных цистеина одной аминокислотой или нет, различают два подсемейства хемокинов, СС и СХС [ Moser, ea 1998 ]. Избыточные концентрации хемокинов стимулируют фагоцитоз нейтрофилов, дыхательный взрыв , дегрануляцию , повышение [Са2+] , а также синтез белка . Напротив, для стимуляции хемотаксиса достаточны низкие, наномолярные концентрации хемокинов.

Хемотаксическую активность клеток следует отличать от хемокинетической. Хемотаксис - это направленная миграция клеток по градиенту концентрации хемотаксических молекул, ахемокинез - беспорядочное перемещение клеток, которое связано с усилением общей подвижности клеток под действием того или иного медиатора, например, гистамина.

В группу хемокинов входит ряд хемотаксических гепарин-связывающих молекул, которая состоит не менее чем из 25 низкомолекулярных цитокинов , в том числе ИЛ-8 и RANTES . Хемокины высвобождаются в очаге воспаления и могут связываться на поверхности эндотелия. Связанные с поверхностью эндотелия, они могут вызывать повышение авидности интегринов налейкоцитах в первой фазе миграции (краевого стояния), когда движение лейкоцитов останавливается при участии селектинов .

Большинство хемокинов синтезируется лейкоцитами, однако ИЛ-8 и хемотаксический для макрофагов белок 1 (MCP-1) (macrophage chemotactic protein-1) продуцирует, например, культура клеток эндотелия. При этом синтез ИЛ-8 и MCP-1 усиливается при активации этих клеток цитокинами, способствующими развитию воспаления.

Некоторые хемокины только активируют клетки, другие проявляют в первую очередь хемотаксические свойства, третьи сочетают обе функции. Можно предполагать, что за счет этого разнообразия возможна избирательная регуляция перемещения лейкоцитов как у поверхностного эндотелия, так и в тканях.

Хемотаксической активностью помимо хемокинов обладают и такие молекулы, как C5a илейкотриен B4 . Эти белки вызывают хемотаксис нейтрофилов и макрофагов . Оба эти хемоаттрактанта образуются в очаге воспаления: C5a - в результате активации комплемента , а лейкотриен-B4 - при активации разнообразных клеток, чаще всего макрофагов и тучных клеток .

Кроме того хемотаксис фагоцитов вызывают молекулы, образуемые системой свертывания крови , прежде всего фибриновый пептид B и тромбин.

Клетки, прибывшие первыми в очаг воспаления, способны в результате активации вызвать следующую волну лейкоцитарной миграции. Так активированные моноциты выделяют ИЛ-8 , который может вызвать хемотаксис нейтрофилов и базофилов . Подобно этому, активация макрофагов приводит к метаболизированию арахидоновой кислоты с образованием и выделением лейкотриена B4.

Хемотаксические факторы могут стать медиаторами аллергических реакций .

Хемокины являются цитокинами , которые инициируют локальное воспаление в результате вовлечения инфламаторных (воспалительных) клеток в процесс хемотаксиса, а далее в процесс активации их функции.

Регуляция воспалительной реакции комплементом

Воспалительная острая реакция , опосредованная активацией комплемента , разворачивается следующим образом. Начинается активация комплемента по альтернативному пути . C3bBb закрепляется на поверхности микроорганизма и расщепляет большие количества C3 . ФрагментC3a выделяется, а многочисленные молекулы C3b связываются с микроорганизмом. Это активирует следующий этап с образованием C5a и лизирующего мембрану комплекса .

Далее C3a и C5a способствуют высвобождению медиаторов из тучных клеток и вместе с ними вовлекают полиморфноядерные нейтрофилы и другие компоненты системы комплемента в очаг проникновения микроорганизма. Все это вызывает расслабление стенок артерий и приводит к усилению кровотока и расширению мелких сосудов, в то время как сокращение клеток эндотелия капилляров позволяет выходить белкам плазмы из сосудов. Нейтрофилы замедляют движение у стенок капилляров, проникают в отверстия между эндотелиальными клетками (диапедез ) и перемещаются по градиенту концентрации хемотаксических факторов до тех пор, пока не окажутся лицом к лицу с микроорганизмом, покрытым C3b . Далее происходит связывание микроорганизма с C3b-рецепторами нейтрофилов, C3a и C5a резко активируют клеточное дыхание и мгновенно наступает финал последнего действия.

Фрагмент С5а и другие продукты активации комплемента содействуют хемотаксису , агрегации и дегрануляции нейтрофилов и образованию свободных радикалов кислорода . Введение С5а животным приводило к артериальной гипотонии , сужению легочных сосудов, нейтропении и повышению проницаемости сосудов из-за повреждения эндотелия.

Хемоаттрактанты - хемокины (хетаксические молекулы).

Система комплемента - комплекс сложных белков, постоянно присутствующих в крови. Это каскадная система протеолитических ферментов, предназначенная для гуморальной защиты организма от действия чужеродных агентов, она участвует в реализации иммунного ответа организма. Является важным компонентом как врождённого, так и приобретённого иммунитета.

Мембраноатакующий комплекс, вызывающий лизис клетки.

История понятия

В конце XIX столетия было установлено, что сыворотка крови содержит некий «фактор», обладающий бактерицидными свойствами. В 1896 году молодой бельгийский ученый Жюль Борде, работавший в Институте Пастера в Париже, показал, что в сыворотке имеются два разных вещества, совместное действие которых приводит к лизису бактерий: термостабильный фактор и термолабильный (теряющий свои свойства при нагревании сыворотки) фактор. Термостабильный фактор, как оказалось, мог действовать только против определенных микроорганизмов, в то время как термолабильный фактор имел неспецифическую антибактериальную активность. Термолабильный фактор позднее был названкомплементом . Термин «комплемент» ввел Пауль Эрлих в конце 1890-х годов. Эрлих был автором гуморальной теории иммунитета и ввел в иммунологию много терминов, которые впоследствии стали общепринятыми. Согласно его теории, клетки, ответственные за иммунные реакции, имеют на поверхности рецепторы, которые служат для распознаванияантигенов. Эти рецепторы мы сейчас называем «антителами» (основой вариабельного рецептора лимфоцитов является прикреплённое к мембране антитело класса IgD, реже IgM. Антитела других классов в отсутствие соответствующего антигена не прикреплены к клеткам). Рецепторы связываются с определенным антигеном, а также с термолабильным антибактериальным компонентом сыворотки крови. Эрлих назвал термолабильный фактор «комплементом» потому, что этот компонент крови «служит дополнением» к клеткам иммунной системы.

Эрлих полагал, что имеется множество комплементов, каждый из которых связывается со своим рецептором, подобно тому, как рецептор связывается со специфическим антигеном. В противоположность этому Борде утверждал, что существует «дополнение» только одного типа. В начале XX века спор был разрешен в пользу Борде; выяснилось, что комплемент может активироваться с участием специфических антител или самостоятельно, неспецифическим способом.

Общее представление Компоненты системы комплемента

Комплемент - система белков, включающая около 20 взаимодействующих компонентов: С1 (комплекс из трех белков), С2, СЗ, …, С9, фактор В, фактор D и ряд регуляторных белков. Все эти компоненты - растворимые белки с мол. массой от 24 000 до 400 000, циркулирующие в крови и тканевой жидкости. Белки комплемента синтезируются в основном в печени и составляют приблизительно 5 % от всей глобулиновой фракции плазмы крови. Большинство из них неактивны до тех пор, пока не будут приведены в действие или в результате иммунного ответа (с участием антител), или непосредственно внедрившимся микроорганизмом (см. ниже). Один из возможных результатов активации комплемента - последовательное объединение так называемых поздних компонентов (С5, С6, С7, С8 и С9) в большой белковый комплекс, вызывающий лизис клеток (литический, или мембраноатакующий, комплекс). Агрегация поздних компонентов происходит в результате ряда последовательных реакций протеолитической активации с участием ранних компонентов (С1, С2, С3, С4, фактора В и фактора D). Большинство этих ранних компонентов - проферменты, последовательно активируемые путем протеолиза. Когда какой-либо из этих проферментов специфическим образом расщепляется, он становится активным протеолитическим ферментом и расщепляет следующий профермент, и т. д. Поскольку многие из активированных компонентов прочно связываются с мембранами, большинство этих событий происходит на поверхностях клеток. Центральный компонент этого протеолитического каскада - С3. Его активация путем расщепления представляет собой главную реакцию всей цепи активации комплемента. С3 может быть активирован двумя основными путями - классическим и альтернативным. В обоих случаях С3 расщепляется ферментным комплексом, называемым С3-конвертазой. Два разных пути приводят к образованию разных С3-конвертаз, однако обе они образуются в результате спонтанного объединения двух компонентов комплемента, активированных ранее в цепи протеолитического каскада. С3-конвертаза расщепляет С3 на два фрагмента, больший из которых (С3b) связывается с мембраной клетки-мишени рядом с С3-конвертазой; в результате образуется ферментный комплекс еще больших размеров с измененной специфичностью - С5-конвертаза. Затем С5-конвертаза расщепляет С5 и тем самым инициирует спонтанную сборку литического комплекса из поздних компонентов - от С5 до С9. Поскольку каждый активированный фермент расщепляет много молекул следующего профермента, каскад активации ранних компонентов действует как усилитель: каждая молекула, активированная в начале всей цепи, приводит к образованию множества литических комплексов.

Взаимосвязь между реактивностью и резистентностью.

· Увеличение реактивности вызывает повышение активной резистентности. Например повышение температуры тела при лихорадке способствует увеличению образования антител, что приводит к повышению иммунитета.

· Увеличение реактивности уменьшение активной резистентности. Например, увеличение выработки антител при аллергии приводит к понижению устойчивости организма к действию веществ антигенной природы.

· Уменьшение реактивности приводит к уменьшению резистентности. Уменьшение образования антител приводит к понижению иммунитета.

· Уменьшение реактивности приводит к повышению резистентности. Например при гипотермии увеличивается устойчивость организма к инфекции, интоксикации и т.д. (зимняя спячка).

Барьерные свойства (факторы защиты) ротовой полости обеспечиваются неспецифическими и специфическими (иммунологическими) механизмами. Неспецифические факторы защиты связаны со структурными особенностями слизистой оболочки ротовой полости, защитными свойствами слюны (ротовой жидкости), а также с нормальной микрофлорой полости рта. Специфические факторы обеспечиваются функционированием Т-, В-лимфоцитов и иммуноглобулинами (антителами). Специфические и неспецифические факторы защиты взаимосвязаны и находятся в динамическом равновесии. Механизмы местного иммунитета чрезвычайно чувствительны к воздействию различных внешних (экзогенных) и внутренних (эндогенных) факторов. При нарушении местного или общего иммунитета происходит активация микрофлоры в ротовой полости и развитие патологических процессов. Важное значение имеют экологическая обстановка, характер профессиональной деятельности, питание и вредные привычки человека. Ухудшение экологической ситуации, влияние на организм неблагоприятных факторов окружающей среды привели к росту заболеваемости населения, увеличению инфекционных, аллергических, аутоиммунных и других патологий. Изменилось и клиническое течение различных заболеваний человека, увеличился процент атипичных и стертых форм, резистентных к общепринятым методам терапии, чаще отмечается хронизация процесса. Нередко условно-патогенные микробы становятся патогенными для человека. Одновременно с этим по мере развития иммунологии становится ясно, что течение и исход практически всех заболеваний и патологических процессов в организме в той или иной степени зависят от функционирования иммунной системы.

Неспецифические факторы резистентности:

1. естественные барьеры: кожа и слизистые оболочки

2. система фагоцитов (нейтрофилы и макрофаги)

3. система комплемента

4. интерфероны

5. бактерицидные гуморальные факторы



6. система естественных (нормальных) киллеров, не обладающих антигенной

специфичностью (Т-киллеры, N К-клетки).

1 .Кожа и слизистые оболочки . Способность кожи к десквамации клеток обеспечивает механическое удаление патогенной инфекции, а воздействие молочной кислоты и жирных кислот, содержащихся в поте и секрете сальных желез и обусловливающих низкое значение рН, оказывается губительным для большинства бактерий за исключение Staphylococcus aureus.

Секрет, выделяемый мукоцеллюлярным аппаратом слюнных желез, бронхов, желудка, кишечника и других внутренних органов, действует как защитный барьер, препятствуя прикреплению бактерий к эпителиальным клеткам и механически удаляя их за счет движения ресничек эпителия (при кашле, чихании). Вымывающее действие слюны, слез, мочи способствует защите поверхности от повреждения, вызванного патогенными агентами. Во многих биологических жидкостях, выделяемых организмом, содержатся вещества, обладающие бактерицидными свойствами (например, лизоцим в слюне, слезах, носовых выделениях; соляная кислота в желудочном соке; лактопероксидаза в грудном молоке и т.д.). По мнению многих исследователей, собственная микрофлора ротовой полости также подавляет рост патогенной флоры за счет конкурентного потребления веществ, необходимых для роста, и выделяют такие факторы, как перекись водорода, молочная кислота, нуклеазы и даже лизоцим.

2. Система фагоцитов , как неспецифических факторов резистентности, представлена двумя типами клеток: микрофагами (полиморфноядерные нейтрофилы) и макрофагами, трансформирующимися из моноцитов, которые задерживаются в тканях, образуя систему мононуклеарных фагоцитов. Ряд компонентов слюны (оксидаза, калликреин, кинины и др.) обладают выраженной хемотаксической активностью, благодаря чему регулируют миграцию лейкоцитов в полость рта.

Всем фагоцитам присущи следующие функции:

1. миграция – способность к беспорядочному перемещению в пространстве.

2. хемотаксис – способность к направленному перемещению в пространстве.

3. адгезия – способность фагоцитов прилипать к определенным субстратам и задерживаться на них.

4. эндоцитоз – способность захватывать и поглощать твердые частицы и капли жидкости.

5. бактерицидность – способность убивать и переваривать бактерии.

6. секреция – способность выделять гидролазы и другие биологически активные вещества.

Фагоцитоз – это активное поглощение клетками твердого материала. Стадии фагоцитоза: 1. Стадия сближения 2. Стадия прилипания 3. Стадия поглощения 4. Стадия переваривания

На поверхности фагоцитов есть специальные рецепторы к веществам опсонинам. Опсонины – это вещества, которые способствуют прилипанию бактерий и антигенов к фагоцитам и стимулируют фагоцитоз. Адсорбция опсонинов на поверхности бактериальных клеток и антигенов называется опсонизацией. Среди опсонинов наибольшее значение имеют антитела – Ig G и промежуточные продукты активации комплемента С 3б, С-реактивный белок, фибронектин.

Механизмы разрушения микроорганизмов в фагоците.

· кислородная система (перекись водорода и свободные радикалы)

· лизоцим

· лактоферрин (конкурирует с микробами за ионы железа)

· катионные белки

· лизосомальные ферменты

Фагоцитоз легче протекает в присутствии ионов кальция и магния и при хорошей оксигенации. Гранулы нейтрофилов содержат низкомолекулярные катионные полипептиды и катионные белки, лизоцим, лактоферрин и широкий спектр гидролаз, достаточный для деградации всех или многих липидов, полисахаридов и белков бактерий, что приводит к их значительной деструкции в считанные часы. Однако при высокой плотности нейтрофилов на единицу объема ткани наступает их самоактивация и образование очагов инфильтрированной ткани (абсцессы, фурункулы). Активированные нейтрофилы потенциально цитотоксичны для окружающих клеток. К неспецифическим факторам резистентности относятся также моноциты и макрофаги. Макрофаги продуцируют растворимые белки монокины: интерлейкин-1, лейкоцитарный пироген, интерфероны, простагландины, тромбоксан А 2 , лейкотриены В и С, фибронектин, который участвует в клеточной адгезии, распластывании и движении клеток.

Дефекты фагоцитарной системы существенно снижают естественную резистентность организма. Они проявляются в сочетании с иммунными нарушениями. Выделяют несколько вариантов этих дефектов.

1. Снижение продукции или ускоренный распад гранулоцитов , что характерно для детского хронического агранулоцитоза с аутосомно-рецессивным типом наследования, гиперспленизма, сцепленной с полом гипогаммаглобулинемии, лекарственной аллергии. Это проявляется периодическими нейтропениями и моноцитопениями, при которых отмечается повышение температуры тела, общее недомогание, головная боль, пиогенные инфекции, изъязвление слизистой оболочки полости рта и другие осложнения, представляющие угрозу для жизни больного.

2. Нарушение подвижности и хемотаксиса гранулоцитов , что наблюдается при циррозе печени, ревматоидном артрите (хемотаксис тормозят иммунные комплексы), сахарном диабете, кандидозе слизистых и кожи (нарушение полимеризациии актина и метаболизма АТФ). В некоторых случаях нарушение хемотаксиса и фагоцитоза связано с наследственным дефектом особого вида белка (GP110), из-за чего больные становятся чувствительными главным образом к бактериальным инфекциям.

3. Нарушение адгезивных свойств (опсонизации), что может быть связано с отсутствием мембранного гликопротеина (GP110), влияющего на адгезию нейтрофилов, дефектом системы пропердина и дефицитом потребления комплемента. Это проявляется частыми инфекциями: отитами, периодонтитами, пневмониями.

4. Нарушение внутриклеточного процесса переработки антигена может быть обусловлено замедленным образованием или отсутствием специфических гранул в нейтрофилах, что сопровождается подавлением их бактерицидных свойств. Причинами подавления бактерицидности могут быть врожденный дефицит миелопероксидазы в первичных гранулах нейтрофилов и макрофагов, а также отсутствие лизоцима, что может проявляться кандидозом.

5. Незавершенность фагоцитоза. Необходимое условие процесса внутриклеточной бактерицидности - это постоянная продукция гранулоцитами и моноцитами перекиси водорода. В противном случае фагоцитоз происходит, как правило, нормально, но возбудители не перевариваются и сохраняют свои свойства. В результате возникают тяжелые рецидивирующие инфекции, дерматит, стоматит, деструктивные процессы в легких, гепатоспленомегалия. В пораженных органах и тканях обнаруживаются гранулематозные изменения, иногда с абсцедированием.

3. Система комплемента - сложный комплекс сывороточных белков {около 20 белков). Комплемент представляет собой систему высокоэффективных протеаз, последовательная активация которых вызывает бактериолизис или цитолиз. Из общего количества сывороточных белков на систему комплемента приходится 10 %. Она является основой защитных сил организма. Комплемент активирует фагоцитоз, осуществляя непосредственно или опосредованно через антитела опсонизацию микробов. Компоненты комплемента обладают хемотаксической активностью, участвуют в регуляции гуморального звена иммунитета.

Основные функции активированного комплемента:

1. опсонизация бактерий, вирусов и усиление фагоцитоза

2. лизис микробов и других клеток

3. хемотаксис

Нарушения в системе комплемента:

1. Дефицит компонентов комплемента. Наследственно обусловленный дефицит С 1, С 2, С 3 и других компонентов этой системы. Например, дефицит С1 – сыворотка утрачивает бактерицидность, повторные инфекции верхних дыхательных путей, отит, поражение суставов и хр. гломерулонефрит. Компонент С3 является ключевым в формировании ферментных и регуляторных свойств комплемента и при его дефиците - высокая смертность. Приобретенная недостаточность комплемента наблюдается при эндокардите, сепсисе, малярии, некоторых вирусных инфекциях, красной волчанке, ревматоидном артрите. При всех этих заболеваниях может развиваться гломерулонефрит, вероятно, вследствие накопления неразрушенных в отсутствие комплемента комплексов АГ+АТ.

2. Дефицит ингибиторов и инактиваторов компонентов комплемента. Дефицит ингибитора С 1 ведет к избыточной активации комплемента и развитию отека Квинке.

Выраженные нарушения системы комплемента характерны для острых бактериальных и вирусных инфекций, аутоиммунной гемолитической анемии, иммунной тромбоцитопении, гломерулонефрита, красной волчанки, сывороточной болезни и т.д. Функциональные дефекты системы комплемента приводят к тяжелым рецидивирующим инфекциям (пневмонии, стоматиты) и патологическим состояниям, обусловленным иммунными комплексами.

4. Бактерицидные гуморальные факторы. Среди растворимых бактерицидных соединений, вырабатываемых организмом, наиболее распространен фермент лизоцим (муромидаза). Он расщепляет муроминовую кислоту, входящую в состав оболочки грамотрицательных бактерий, что ведет к лизису клеточных стенок микроорганизмов. Лизоцим синтезируется и выделяется гранулоцитами, моноцитами и макрофагами, содержится во всех жидкостях организма: слюне, слезной жидкости, ликворе, сыворотке крови - и является важным фактором бактерицидности.

Лактоферрин т акже относится к бактерицидным гуморальным факторам. Это белок, содержащийся в специфических гранулах нейтрофилов. Он играет важную роль в образовании гидроксильных радикалов из молекулярного кислорода и пероксида водорода и продукции через интерлейкин-1 острофазных белков: С-реактивного белка, фибриногена и компонентов комплемента (СЗ и С9).

5. Интерфероны - низкомолекулярные белки, синтезируемые лимфоцитами (14 разновидностей a-интерферона) и фибробластами (b-интерферон). При вирусной инфекции под действием интерферонов в незараженной клетке стимулируется образование белков-ингибиторов, которые нарушают репродукцию вирусов.

6. Система нормальных киллеров (NK-клеток). Это естественные, натуральные, природные киллеры. Они представляют собой большие гранулярные лимфоциты - низкодифференцированные потомки стволовой кроветворной клетки и оказывают неспецифическое токсическое действие на клетки некоторых опухолей и нормальных тканей. Они функционируют как эффекторы противовирусного иммунитета. В качестве NК-клеток могут функционировать полиморфноядерные гранулоциты, макрофаги, моноциты, тромбоциты, а также Т-лимфоциты.

Как было изложено ранее (см. главу 1), в состав функциональ­ного элемента входят микроциркуляторное русло, лимфатичес­кие сосуды, артериоловенулярные сосуды, сосудодвигатель-ные нервы, специфические клетки, а также тучные клетки, гистиоциты и ретикулярные клетки и волокна, образующие ретикулоэндотелиальную сеть. Ретикулоэндотелиальная сеть ха­рактерна для миелоидной и лимфоидной тканей. Ретикуляр­ные клетки способны фагоцитировать антигенные белки, но


лишены подвижности и поэтому называются фиксированными макрофагами. Ретикулоэндотелиальная сеть широко представ­лена в структурах глоточного лимфоидного кольца и вовле­кается в защитные реакции при ряде стоматологических за­болеваний.

Тучные клетки при воздействии повреждающего фактора вы­рабатывают физиологически активные вещества (гепарин, ги-стамин, серотонин, дофамин, ферменты) и выделяют их в периваскулярные пространства функционального элемента. Это приводит к изменению состояния микроциркуляторного рус­ла последнего и развитию первых этапов воспаления: кратков­ременному сужению сосудов с последующим их расширением и появлением гиперемии, повышению проницаемости сосуди­стой стенки, прилипанию ко внутренней стенке сосудов лей­коцитов и моноцитов, их выходу в периваскулярные простран­ства, что лежит в основе образования демаркационной зоны вокруг места повреждения.

Гистиоциты функционального элемента под влиянием по­вреждающих факторов превращаются в макрофаги, способные поглощать и разрушать антигены и микроорганизмы.

Описанные реакции наблюдаются при ряде стоматологичес­ких заболеваний, например при гингивитах, в начальных ста­диях которых отчетливо видна гиперемия десен в пришеечных областях зубов вследствие расширения приносящих сосудов микроциркуляторного русла. При отсутствии или недостаточ­ности лечения увеличивается и количество грамотрицательных бактерий и их эндотоксинов, прогрессируют изменения мик­роциркуляторного русла: усиливаются диапедез лейкоцитов и эритроцитов, экссудация плазмы в периваскулярные простран­ства, нарушается отток по лимфатическим сосудам функцио­нального элемента - возникает отек десен или слизистой обо­лочки рта, что наблюдается, например, при стоматитах раз­личной этиологии. Дальнейшее развитие заболевания связано с остановкой циркуляции крови в микрососудах, нарушением трофики, некрозом - возникает язвенный гингивит (язвенно-некротический стоматит Венсана).

Таким образом, на начальных этапах действия повреждаю­щих агентов к защите организма привлекаются факторы есте­ственной (неспецифической) резистентности, важнейшими элементами которой являются макрофаги (ретикулярные, туч­ные клетки и гистиоциты). Основным механизмом защиты на этой стадии является фагоцитоз.

Фагоцитоз - процесс, объединяющий различные клеточные реакции, направленные на распознавание объекта фагоцито­за, его поглощение, разрушение и удаление из организма. Основные стадии фагоцитоза:


Хемотаксис - движение фагоцита к объекту;

Аттракция - прилипание объекта к поверхности фагоци­та с постепенным погружением в клетку и образованием фагосомы;

Поглощение;

Ферментативное расщепление;

Переваривание.

Фагоцитоз может быть завершенным, когда объект ^практи­чески растворяется и остатки переваренного материала выбра­сываются из клетки, и незавершенным, когда размножающиеся микроорганизмы разрушают фагоцитирующую клетку. Контакт макрофагов с чужеродными веществами заканчивается фаго­цитозом или адгезией, если они превышают размер фагоцита. Фагоцитоз и адгезия обусловлены неспецифическими рецеп­торами на поверхности мембраны фагоцитов. Разнообразие рецепторов - основа чувствительности фагоцитов к многочис­ленным раздражителям и важный показатель их функциональ­ной зрелости и потенциальной активности. Рецепторы позво­ляют макрофагу прочно присоединиться к мишени, опсони-зировать ее (подготовить к фагоцитозу) с помощью иммуно­глобулинов и комплемента, фагоцитировать.

При образовании очага воспаления локомоторная функция фагоцитов имеет решающее значение. Локомоция может быть спонтанной (хемокинез) или вызванной химическим агентом (хемотаксис). Эндоцитоз и фагоцитоз сопровождаются парали­чом двигательной активности клеток.

Фагоциты являются мощными секреторными клетками. Они секретируют ферменты (нейтральные протеиназы, кислые гид­ролазы, лизоцим), ингибиторы ферментов, некоторые белки плазмы (компоненты комплемента, фибронектин), вещества, регулирующие функции и рост других клеток (интерферон, интерлейкин-1). Фагоциты при помощи медиаторной системы разрушают внеклеточные объекты, размер которых исключает возможность их поглощения. Фагоцитарной активностью обла­дают полинуклеарные и мононуклеарные лейкоциты.

Полинуклеарные лейкоциты (макрофаги) - в основном ней-трофилы. Они представляют собой высокодифференцированные короткоживущие клетки, попадающие в кровь из костного мозга после 2 нед созревания. В циркуляторном русле они об­мениваются каждые 5 ч. Попадая в ткани, нейтрофилы живут в них 2-5 сут, почти не меняясь морфологически. Нейтрофи­лы подвижны, отвечают на хемотаксические стимулы, содер­жат гранулы с ферментативной и бактерицидной активностью, фагоцитируют, но не в состоянии обеспечить иммуногенность антигена и индуцировать иммунный ответ. Содержат на повер­хности разнообразные рецепторы к широкому классу ве-


ществ - гистамину, простагландинам, кортикостероидам, им­муноглобулинам.

Первыми в очаг воспаления устремляются нейтрофилы, фор­мирующие демаркационный вал с участием медиаторов вос­паления и кининов. Сами нейтрофилы обладают цитотоксичес-кими свойствами и включаются в развитие воспалительного процесса, определяя в известной мере его дальнейшее тече­ние и исход. Затем в очаге воспаления накапливаются моно­нуклеарные фагоциты, принимающие участие в его санации, | ликвидации органических разрушений, восстановлении ткане­вого дефекта. Несостоятельность функции полинуклеарных фагоцитов и усиленный фагоцитоз распадающихся клеток мак­рофагами могут способствовать развитию гнойного воспаления, которое обычно вызывается стафилококками и стрептококка­ми, реже - синегнойной палочкой, обычно присутствующи­ми в полости рта. Гнойные формы воспаления кожи губ, крас­ной каймы губ, в углах рта, на слизистой оболочке полости рта - нередкое явление в стоматологической практике. В соот­ветствующих руководствах по стоматологии описаны призна-I ки, характер течения и методы лечения таких гнойных пато­логических процессов, как импетиго, заеда, фурункул, шанк-риформная пиодермия, абсцессы и флегмоны челюстно-лицевой области.


ют во всех тканях организма. Длительность их жизни - от не­скольких недель до нескольких месяцев. В функциональном отношении среди гетерогенных мононуклеарных макрофагов различают клетки-эффекторы, клетки-продуценты биологичес­ки активных веществ, добавочные клетки. Они продуцируют ин-терлейкин-1, компоненты комплемента, интерфероны, лизо-цим, активатор плазминогена, монокины, цитокин, проста-гландин Е, тромбоксан А, лейкотриены. Мононуклеарные фа­гоциты составляют одну из основных частей системы защиты организма от патогенных агентов - бактерий, грибов, простей­ших и других микроорганизмов. Они элиминируют мертвые и поврежденные клетки, органические и инертные частицы, секретируют биологически активные вещества. Макрофаги уча­ствуют в процессах воспаления, регенерации, репарации, фиб-рогенеза, выполняют секреторную, цитотоксическую, а также кооперативную и эффекторную функции в специфических иммунных реакциях. Первичная несостоятельность системы моноцитарных фагоцитов, разобщение ее функционирования с системой полиморфно-ядерных лейкоцитов приводят к раз­витию гранулематозного воспаления, как это иногда бывает при периодонтитах (кистогранулема).

Фибронектин - один из продуцентов макрофагов, высоко­молекулярный гликопротеид, выполняет опсонизирующую и адгезивную функции. Характеризуется высоким аффинитетом (сродством) к коллагену, фибрину, актину, гепарину. Опсо-низирует небактериальные частицы, увеличивает фагоцитарную активность звездчатых ретикулоэндотелиоцитов (купферовских клеток) при действии различных патогенных агентов.

Простагландины синтезируются макрофагами, клетками почек, эндокринных желез и других тканей. Основной меха­низм их действия - влияние на систему мембранных алени-латциклаз. Простагландины различных серий (Е, F, А) регу­лируют клеточный и гуморальный ответы. Они ингибируют активность Т-лимфоцитов, угнетают продукцию антител, миг­рацию макрофагов, взаимодействуют с лимфокинами. Проста­гландины, вероятно, играют роль медиаторов между макрофа-гальными фагоцитами и подвижностью клеток в очагах воспа­ления, т.е. являются иммунорегуляторами воспалительных про­цессов. Угнетение синтеза простагландинов приводит к увели­чению иммунного ответа. Наиболее существенная роль в регу­ляции последнего принадлежит простагландину Е. Макрофаги посредством медиаторов монокинов усиливают синтез колла­гена, пролиферацию фибробластов, эндотелия сосудов.

Интерферон повышает естественную резистентность организ­ма. Синтезируется в основном макрофагами, лимфоцитами и фибробластами при действии вирусов. Для нормальной продук­ции интерферона в организме необходимо полноценное фун-


кционирование Т-системы лимфоцитов; при этом антивирус­ный эффект в значительной степени связан с активацией Т-лимфоцитов, продуцирующих гамма-интерферон. Известны три типа интерферона: альфа-интерферон, получаемый из лей­коцитов донорской крови человека; бета-интерферон - из дип­лоидных клеток человека и гамма-интерферон, спонтанно про­дуцируемый и иммунный, получаемый путем воздействия ми-тогенов на Т-лимфоциты. Все типы интерферона оказывают антивирусный, иммуномодулирующий, антипролиферативный эффекты. Интерферон способен блокировать репликацию ДНК-и РНК-вирусов. Интерферон подавляет соединение вирусной РНК с рибосомами клетки. Иммуномодулирующее влияние интерферона связано с его способностью увеличивать фагоци­тоз, синтез антител, повышать цитотоксическую активность клеток, прежде всего естественных клеток-киллеров. Альфа-ин­терферон способен ингибировать клеточную пролиферацию, рост опухолевых клеток, угнетать образование антител. Стиму­лируют продукцию интерферона мефенаминовая кислота, ле- вамизол. Существенно снижают (подавляют) продукцию интер­ферона препараты, содержащие АКТГ. Продукция интерферо­на возрастает при вирусных поражениях органов полости рта: простом пузырьковом лишае (простой герпес), рецидивирую­щем герпесе, остром герпетическом стоматите, герпетической ангине, бородавках.

Свойство цитотоксичности и способность к образованию мно­гих цитокинов присуще также нестимулированным лимфоци­там - естественным клеткам-киллерам. Эти клетки действуют независимо от антигенной стимуляции, наличия антител и ком­племента. Они способны лизировать некоторые виды инфици­рованных вирусами опухолевых, аутологичных клеток, осуще­ствляя тем самым иммунный надзор; участвуют в регуляции дифференцировки, пролиферации и функциональной активно­сти В-лимфоцитов, процессах образования антител, синтезе иммуноглобулинов. Естественные клетки-киллеры обеспечивают первый уровень защиты до включения иммунных механизмов.

Пропердин - высокомолекулярный белок глобулиновой фракции сыворотки крови; рассматривается как нормальное антитело, образуемое в результате естественной скрытой им­мунизации различными веществами полисахаридной природы. Способен соединяться с полисахаридными структурами мик­робных клеток. В совокупности с другими гуморальными фак­торами пропердин обеспечивает бактерицидное, гемолитичес­кое, вируснейтрализующее свойства сыворотки крови, явля­ется медиатором иммунных реакций.

Система комплемента относится к важнейшим гуморальным эффекторным системам организма. Она состоит из 20 белков

Устойчивое сохранение высокой продуктивности сельскохозяйственных животных во многом зависит от умелого использования человеком адаптационных и защитных свойств их организма. Становится необходимым систематическое и всестороннее изучение естественной резистентности животных. В условиях хозяйств только те животные могут давать ожидаемый эффект, которые обладают высокой естественной резистентностью к неблагоприятным условиям среды.
Технологию производства продукции в животноводстве необходимо сочетать с физиологической потребностью и возможностями животного.
Известно, что у высокопродуктивных животных и птицы направленность биохимических процессов на синтез веществ, составляющих продукцию, очень напряженная. Эта напряженность обменных процессов у животных усугубляется еще и совпадением продуктивного периода в значительной своей части с периодом вынашивания плода. С иммунобиологических позиций состояние живых организмов в современных условиях характеризуется снижением иммунологической реактивности и неспецифического иммунитета.
Проблеме изучения естественной резистентности животных уделялось внимание многих исследователей: А.Д. Адо; С.И. Плященко; Л.К. Бурая, Д.И. Барсукова; И.Ф. Храбустовский.
Защитную функцию крови профессор А.Я. Ярошев характеризовал следующим образом: «Кровь является местом, где находятся различного рода антитела, как образующиеся в ответ на поступление микроорганизмов, веществ, токсинов, так и видовые, обеспечивающие приобретенный и врожденный иммунитет».
Естественная резистентность и иммунитет являются защитными приспособлениями. Вопрос о преимуществе одного из этих защитных приспособлений являются дискуссионным. Неоспоримо то, что в инкубационный период перед выработкой иммунитета, организм оказывает решающее сопротивление заразному агенту и нередко выходит победителем. Вот эту первоначальную сопротивляемость заразному агенту и осуществляют факторы неспецифической защиты. При этом особенность естественной резистентности в отличие от иммунитета является способность организма наследовать неспецифические факторы защиты.
Естественная, или физиологическая резистентность организма является общебиологическим свойством как растений, так и животных. От ее уровня зависит устойчивость организма к вредным факторам внешней среды, в том числе и к микроорганизмам.
В области изучения естественного иммунитета разработки теоретических положений и применения полученных достижений в практике сельскохозяйственных производств много сделали отечественные и зарубежные селекционеры - растениеводы. Что касается животноводства, то по этой труднейшей и весьма важной проблеме исследования довольно разрозненные, отдельные, не объединенные общей направленностью.
Нельзя отрицать, что искусственная иммунизация сельскохозяйственных животных сыграла и продолжает играть неоценимую роль в борьбе со многими инфекционными болезнями, наносившими огромный урон животноводству, но и нельзя думать, что только таким путем можно бесконечно долго сохранять благополучие животных.
Медицине и ветеринарии известно более тысячи инфекционных болезней, вызываемых микроорганизмами. Если бы даже против всех этих болезней были созданы вакцины и сыворотки, трудно представить себе повсеместное практическое их применение в массовых масштабах.
Как известно, в животноводстве проводят иммунизацию только против наиболее опасных инфекций в угрожающих зонах.
В то же время постепенный, несомненно, весьма длительный отбор и подбор животных, обладающих высокой резистентностью, приведет к созданию особей, если не полностью, то в значительной части устойчивых к большинству вредных факторов.
Опыт отечественного и зарубежного животноводства показывает, что более широкое распространение на фермах и птицефабриках имеют не острозаразные заболевания, а такие инфекционные и неинфекционные заболевания, которые могут возникать на фоне снижения уровня естественной резистентности стада.
Важным резервом увеличения производства продуктов и улучшения их качества является снижение заболеваемости и отхода. Это возможно при повышении общей резистентности организма путем отбора особей, отличающихся невосприимчивостью к различным заболеваниям.
Проблема повышения естественной резистентности тесно связана с использованием генетических задатков, представляет большой научный интерес и имеет важное народнохозяйственное значение. Иммунизация животных и их генетическая устойчивость должны взаимно дополнять друг друга.
Селекция на устойчивость к некоторым заболеваниям в отдельности может быть эффективной, но селекция на устойчивость сразу к нескольким заболеваниям параллельно с селекцией по признакам продуктивности практически невозможна. Исходя из этого необходима селекция на повышение общего уровня естественной резистентности организма. Можно привести много примеров, когда односторонняя селекция на продуктивность без учета естественной резистентности приводила к преждевременной выбраковке и утрате ценных линий и семейств.
Создание животных и птицы с высоким уровнем естественной резистентности требует специальных селекционно-генетических программ, большое внимание в которых должно быть уделено таким вопросам, как установление фенотипа и генотипа птицы, отличающейся повышенной естественной резистентностью, изучение наследуемости признака резистентности, установление связи между признаками естественной резистентности и хозяйственно полезными признаками, использование признаков естественной резистентности при селекции. При этом уровень естественной резистентности должен прежде всего отображать способность организма противостоять неблагоприятным факторам внешней среды и указывать на запас защитных сил организма.
Контроль за уровнем естественной резистентности может быть плановотекущим по периодам роста и продуктивности, с учетом принятой в хозяйстве технологии или вынужденным перед проведением технологических приемов: внедрения нового оборудования, перевода животных и птицы из одних условий содержания в другие, вакцинации, ограниченном кормлении, использования новых кормовых добавок и т. д. Это позволит своевремено выявить отрицательные стороны проводимых мероприятий и предотвратить снижение продуктивности, уменьшить процент выбраковки и падежа.
Все данные по определению естественной резистентности животных и птицы должны быть сопоставлены с другими показателями по контролю за ростом и развитием, которые получают в зооветлаборатории.
Контроль за уровнем естественной резистентности должен помочь в определении плановых цифр сохранности поголовья и своевременно наметить мероприятия по имеющимся нарушениям.
Исследования уровня естественной резистентности позволяют в период селекции отбирать высокопродуктивных особей, обладающих одновременно высокой резистентностью при нормальных функциях физиологических систем.
Плановые исследования уровня естественной резистентности необходимо проводить на одной и той же группе в определенные календарные сроки, связанные с напряжением обменных процессов в определенные периоды продуктивности (различные периоды продуктивности, периоды роста).
Естественная резистентность представляет собой реакцию целостного организма, которая регулируется центральной нервной системой. Поэтому для суждения о степени естественной резистентности следует использовать критерии и тесты, отражающие состояние реактивности организма как целого.
Специфику функций иммунной системы определяют процессы, индуцируемые чужеродными субстанциями, антигенами, и основанные на распознавании последних. Однако базой для развертывания специфических иммунных процессов являются более древние реакции, связанные с воспалением. Поскольку они предсуществуют в любом организме до начала любой агрессии и для их развития не требуется развертывания иммунного ответа, эти защитные механизмы называют естественными, или врожденными. Они обеспечивают первую линию защиты от биологической агрессии. Вторая линия защиты - это реакции адаптивного иммунитета - антигенепецифический иммунный ответ. Факторы естественного иммунитета сами по себе обладают достаточно высокой эффективностью в предотвращении биологической агрессии и борьбе с ней, однако у высших животных эти механизмы, как правило, обогащаются специфическими компонентами, которые как бы наслаиваются на них. Система естественных факторов иммунитета является пограничной между собственно иммунной системой и областью, относимой к компетенции патофизиологии, которая также рассматривает механизмы и биологическую значимость ряда проявлений естественного иммунитета, служащих составными компонентами воспалительной реакции.
То есть, наряду с иммунологической реактивностью в организме существует система неспецифической защиты, или неспецифической резистентности. Несмотря на то, что неспецифическая резистентность животных и птицы к различным неблагоприятным воздействиям внешней среды в большей степени обеспечивается лейкоцитарной системой организма, однако она зависит не столько от количества лейкоцитов, сколько от их неспецифических факторов защиты, которые имеются в организме с первого дня жизни и сохраняются до самой гибели. Она включает следующие компоненты: непроницаемость кожных и слизистых покровов; кислотность содержимого желудка; наличие в сыворотке крови и жидкостях организма бактерицидных субстанций - лизоцима, пропердина (комплекса сывороточного белка, ионов М+ и комплемента), а также ферментов и противовирусных веществ (интерферона, термоустойчивых ингибиторов).
Факторы неспецифической защиты первыми включаются в борьбу при поступлении в организм чужеродных антигенов. Они как бы подготавливают почву для дальнейшего развертывания иммунных реакций, которые определяют исход борьбы.
Естественная резистентность животных к различным неблагоприятным воздействиям внешней среды обеспечивается неспецифическими факторами защиты, которые имеются в организме с первого дня жизни и сохраняются до самой гибели. Среди них решающую роль играют фагоцитоз с его защитными клеточными механизмами и гуморальные факторы резистентности, важнейшие из которых лизоцим, бактерицидные факторы. То есть особое положение среди факторов защиты занимают фагоциты (макрофаги и полиморфноядерные лейкоциты) и система белков крови, называемая комплементом. Их можно отнести как к неспецифическим, так, и к иммунореактивным факторам защиты.
Изменения факторов неспецифического иммунитета у животных и птицы имеют возрастные особенности, в частности, с возрастом увеличиваются гуморальные и снижаются клеточные.
Гуморальные факторы неспецифической резистентности как раз и обеспечивают бактерицидные и бактериостатические действия тканей и соков организма и вызывают лизис некоторых видов микроорганизмов. Степень проявления защитных свойств живого организма к микробному агенту хорошо иллюстрирует суммарная бактерицидная активность сыворотки крови. Бактерицидная активность сыворотки крови представляет собой интегральный показатель антимикробной активности всех присутствующих антимикробных веществ, как термолабильных (комплемент, пропердин, нормальные антитела), так и термостабильных (лизоцим, бета-лизин) начал.
К числу факторов естественного иммунитета организма относится лизоцим - универсальный, древнейший защитный фермент, широко распространенный в растительном и животном мире. Особенно широко распространен лизоцим в организме животных и человека: в сыворотке крови, секретах пищеварительных желез и дыхательных путей, молоке, слезной жидкости, шейке матки, печени, селезенке, яйце птиц.
Лизоцим представляет собой основной белок с молекулярной массой 14-15 тыс. Д. Его молекула представлена одной полипептидной цепью, состоящей из 129 аминокислотных остатков и имеющей 4 дисульфидные связи. Лизоцим у животных синтезируется и секретируется гранулоцитами, моноцитами и макрофагами.
Лизоцим в сыворотке крови играет, по крайней мере, двоякую роль. Во-первых, он оказывает антимикробное действие на широкий круг микробов-сапрофитов, разрушая в клеточных стенках мукопротеидные вещества. Во-вторых, не исключено его участие в реакциях приобретенного иммунитета. Бета-лизин обладает свойством разрушения бактериальных клеток при активаторе-комплементе.
Этот фермент обладает основными свойствами белка, вызывает быстрый лизис живых клеток некоторых видов бактерий. Его действие выражается в растворении специфических мукополисахаридных оболочек чувствительных к нему микроорганизмов или задержании их роста. Кроме того, лизоцим убивает бактерии, принадлежащие ко многим другим видам, но не вызывает их лизис.
Лизоцим содержится в гранулоцитах и в активной форме выделяется в результате даже минимального повреждения клеток в окружающую лейкоциты жидкую среду. В связи с этим не случайно этот фермент причисляют к веществам, определяющим естественную и приобретенную невосприимчивость организма к инфекции.
Система комплемента - сложный комплекс белков, представленных главным образом во фракции β-глобулинов, насчитывающий, включая регуляторные, около 20 компонентов, на долю которых приходится 10% белков сыворотки крови и представляющий собой систему каскадно действующих пептидгидролаз. Катаболизм компонентов комплемента самый высокий по сравнению с другими белками сыворотки крови, с обновлением в течение суток до 50% белков системы.
Если учитывать, какую сложную совокупность представляют собой белки сыворотки в системе комплемента, то не приходится удивляться тому, что около 70 лет потребовалось для установления того факта, что комплемент состоит из 9 компонентов, а их в свою очередь можно подразделить на 11 самостоятельных белков.
Комплемент впервые описал Бухнер в 1889 г. Под названием «алексин» - термолабильный фактор, в присутствии которого наблюдается лизис микробов. Свое название комплемент получил благодаря тому, что он комплементирует (дополняет) и усиливает действие антител и фагоцитов, защищая организм человека и животных от большинства бактериальных инфекций. В 1896 г. Borde первый определил комплемент как фактор, присутствующий в свежей сыворотке, который необходим для лизиса бактерий и эритроцитов. Фактор этот не изменялся после предварительной иммунизации животного, что позволило отчетливо дифференцировать комплемент от антител. Поскольку довольно быстро поняли, что комплемент - не единственное функциональное вещество в сыворотке, все внимание было направлено на его способность стимулировать лизис интактных клеток; комплемент стали рассматривать почти исключительно в свете его способности воздействовать на лизис клеток.
Исследование комплемента в аспекте кинетического анализа этапов, ведущих к лизису клетки, позволило получить точные данные о последовательном взаимодействии компонентов комплемента и важные свидетельства многокомпонентности системы комплемента. Идентификация этих факторов показала, что комплемент является важным медиатором в воспалительном процессе.
Комплемент является важнейшим активатором всей системы приобретенных и нормальных антител, которые в его отсутствие недейственны в иммунных реакциях (гемолиз, бактериолиз, отчасти - реакция агглютинации). Комплемент представляет собой систему каскадно-действующих пептидгидролаз, получивших обозначение от С1 до С9. Установлено, что большая часть компонента синтезируется гепатоцитами и другими клетками печени (около 90%, СЗ, С6, С8, фактор В и др.), а также моноцитами - макрофагами (С1, С2, СЗ, С4, С5).
Различные компоненты комплемента и их фрагменты, образующиеся в процессе активации, способны вызывать воспалительные процессы, лизис клеток, стимулировать фагоцитоз. Конечным результатом может быть сборка комплекса из С5-, С6-, С7-, С8-, и С9- компонентов, атакующего мембрану с образованием в ней каналов и повышением проницаемости мембраны для воды и ионов, что обуславливает гибель клеток.
Активация комплемента может происходить двумя основными путями: альтернативным - без участия антител и классическим - с участием антител.
Бактерицидные факторы тесно связаны между собой, и лишение сыворотки одного из них вызывает изменения в содержании других.
Так, комплемент совместно с антителами или другими сенсибилизирующими агентами может убивать некоторые бактерии (например, Vibrio, Salmonella, Shigella, Esherichia) путем повреждения клеточной стенки. Muschel и Treffers показали, что бактерицидная реакция в системе «S. Typhi - С’ морской свинки - антитела кролика или человека» напоминает в некоторых отношениях гемолитическую реакционную систему: Мд++ усиливает бактерицидную активность; кривые бактерицидного действия похожи на кривые гемолитической реакции; между бактерицидной активностью антител и комплементом имеется обратная зависимость; для того, чтобы убить одну бактериальную клетку, необходимо очень малое количество антител.
Для того, чтобы произошло повреждение или изменение клеточной стенки бактерий, необходим лизоцим, причем этот энзим действует на бактерии лишь после обработки их антителами и комплементом. Нормальная сыворотка содержит достаточное количество лизоцима для повреждения бактерий, но если лизоцим удалить, то повреждений не наблюдается. Добавление кристаллического лизоцима яичного белка восстанавливает бактериолитическую активность системы антитело -комплемент.
Кроме того, лизоцим ускоряет и усиливает бактерицидное действие. Эти наблюдения можно объяснить, исходя из предположения, что антитело и комплемент, контактируя с оболочкой бактериальной клетки, обнажают тот субстрат, на который действует лизоцим.
В ответ на попадание в кровь болезнетворных микробов возрастает число лейкоцитов, что называют лейкоцитозом. Основная функция лейкоцитов состоит в уничтожении болезнетворных микробов. Нейтрофилы, которые составляют большинство лейкоцитов, обладая амебоидными движениями, способны передвигаться. Придя в соприкосновение с микробами, эти большие клетки захватывают их, засасывая внутрь протоплазмы, переваривают и уничтожают. Нейтрофилы захватывают не только живые, но и погибшие бактерии, остатки разрушенных тканей и инородные тела. Лимфоциты, кроме того, участвуют в восстановительных процессах после воспаления тканей. Один лейкоцит может уничтожить более 15 бактерий и иногда погибает при этом. То есть, необходимость определения фагоцитарной активности лейкоцитов как показателя сопротивляемости организма очевидна и обоснования не требует.
Фагоцитозом называется специальная форма эндоцитоза, при которой поглощаются крупные частицы. Фагоцитоз осуществляется только специфическими клетками (нейтрофилами и макрофагами). Фагоцитоз является одним из наиболее ранних механизмов защиты человека и различных видов животных от многих внешних воздействий. В отличие от изучения других эффективных функций нейтрофилов, исследования фагоцитоза стало уже традиционным. Как известно, фагоцитоз - многофакторный и многоэтапный процесс, и каждый из его этапов характеризуется развитием каскада сложнейших биохимических процессов.
Процесс фагоцитоза делится на 4 стадии: приближение к фагоцитируемому объекту, контакт и прилипание частиц к поверхности лейкоцита, поглощение частиц и их переваривание.
Первая стадия: Способность лейкоцитов мигрировать в сторону фагоцитируемого объекта зависит как от хемотаксических свойств самого объекта, так и от хемотаксических свойств плазмы крови. Хемотаксис - движение в заданном направлении. Поэтому именно хемотаксис - определенная гарантия включения нейтрофила в поддержание иммунного гомеостаза. Хемотаксис включает в себя как минимум две фазы:
1. Фаза ориентации, во время которой клетки либо вытягиваются, либо образуют псевдоподии. Около 90% клеток уже в течении нескольких секунд ориентируются на заданное направление.
2. Фаза поляризации, в течение которой осуществляется взаимодействие между лигандом и рецептором. Причем однотипность реагирования на хемотаксические факторы различной природы дает основание предполагать универсальность указанных способностей, которые, по видимому, лежат в основе взаимодействия нейтрофила с внешней средой.
Вторая стадия: прилипание частиц к поверхности лейкоцита. На прилипание и захват частиц лейкоцит отвечает повышением уровня метаболической активности. Происходит троекратное увеличение поглощения О2 и глюкозы, усиливается интенсивность аэробного и анаэробного гликолизов. Это состояние обмена веществ при фагоцитозе получило название «метаболического взрыва». Ему сопутствует дегрануляция нейтрофилов. Содержание гранул выделяется во внеклеточную среду путем экзоциноза. Однако дегрануляция нейтрофилов при фагоцитозе - процесс вполне упорядоченный: с наружной клеточной мембраной сливаются сначала специфические гранулы, и лишь затем азурофильные. Итак, фагоцитоз начинается с экзоцитоза - экстренного выброса во внешнюю среду бактерицидных белков и кислых гидролаз, участвующих в резорбции иммунных комплексов и обезвреживании внеклеточно расположенных бактерий.
Третья стадия: вслед за контактом и прилипанием частиц к поверхности фагоцита следует их поглощение. Фагоцитируемая частица попадает в цитоплазму нейтрофила в результате инвагинации наружной клеточной мембраны. Инвагинированная часть мембраны с заключенной частицей отщепляется, вследствие чего образуется вакуоль или фагосома. Этот процесс может происходить одновременно в нескольких участках клеточной поверхности лейкоцита. Контактный лизис и слияние мембран лизосомальных гранул и фагоцитарной вакуоли приводят к образованию фаголизосомы и поступлению в вакуоль бактерицидных белков и ферментов.
Четвертая стадия: внутриклеточное расщепление (переваривание). Образовавшиеся при выпячивании и отшнуровки клеточной мембраны фагоцитарные вакуоли сливаются с находящимися в цитоплазме гранулами. В результате этого возникают пищеварительные вакуоли, заполненные содержимым гранул и фагоцитируемыми частицами. В первые три минуты после фагоцитоза в вакуолях, заполненных бактериями, поддерживается нейтральная pH, оптимальная для действия ферментов, специфических гранул - лизоцима, лактоферина и щелочной фасфотазы. Затем значение pH падает до 4, в результате чего создается оптимум для действия ферментов азурофильных гранул -миелопероксидазы и водорастворимых кислых гидролаз.
Уничтожение живых объектов, или завершенный фагоцитоз, следует рассматривать как итоговый феномен, в котором сфокусировались многие звенья эффекторного потенциала клетки. Принципиальным этапом в учении об антимикробных свойствах фагоцитов явилось развитие представлений о том, что умервщление бактерий (киллер - эффект) не имеет отношения к деградации (перевариванию) мертвых объектов - убитых микробов, обломков собственных тканей, клеток и др. Этому способствует открытие новых бактерицидных факторов и систем, механизмов их цитотоксичности и способов подключения к фагоцитарным реакциям. С точки зрения реактивности, все бактерицидные факторы нейтрофилов можно разделить на 2 группы.
К первой относятся компоненты, преформированные в зрелом нейтрофиле. Их уровень не зависит от стимуляции клетки, а целиком определяется количеством вещества, синтезированного в процессе гранулопоэза. К ним принадлежат лизоцим, некоторые протеолитические ферменты, лактоферрин, катионные белки и низкомолекулярные пептиды, получившие название «дефенсины» (от английского defincе - защита). Они лизируют (лизоцим), убивают (катионные белки) или задерживают рост бактерий (лактоферрин). Их роль в противомикробной защите подтверждают наблюдения, сделанные в анаэробном режиме: нейтрофилы, лишенные возможности использовать бактерицидные свойства активированного кислорода, нормально убивали микроорганизмы.
Факторы второй группы образуются или резко активируются при стимуляции нейтрофила. Их содержание тем выше, чем интенсивнее реакция клеток. Усиление окислительного метаболизма ведет к образованию кислородных радикалов, которые вместе с перекисью водорода, миелопероксидазой и галогенами составляют эффекторное звено кислородозависимого аппарата цитотоксичности. Было бы неверным противопоставлять друг другу различные антимикробные факторы. Их эффективность во многом зависит от взаимной сбалансированности, условий, в которых протекает фагоцитоз, вид микроба. Ясно, например, что в анаэробной среде на первый план выступают биоцидные моменты, независимые от кислорода. Они уничтожают многие бактерии, но даже один устойчивый вирулентный штамм может вскрыть несостоятельность подобной системы. Антимикробный потенциал складывается из суммы взаимно дополняющих, нередко взаимно компенсирующих взаимодействий, которые обеспечивают максимальную эффективность бактерицидных реакций. Повреждение его отдельных звеньев ослабляет нейтрофил, но не означает полной беспомощности в защите от инфицирующих агентов.
Следовательно, трансформация наших представлений о гранулоцитах, в частности о нейтрофилах, за последние годы претерпела чрезвычайно большие изменения, и сегодня гетерогенность функциональных возможностей нейтрофилов вряд ли дает основание причислять их к каким-либо известным клеткам, участвующим в различных формах иммунологического ответа. Это подтверждается как огромным спектром функциональных возможностей нейтрофилов, так и сферой их влияний.
Большой интерес вызывают изменения естественной резистентности в зависимости от различных факторов.
Одной из важнейших сторон проблемы естественной устойчивости организма является изучение ее возрастных особенностей. Реактивные свойства в растущем организме складываются постепенно и окончательно сформировываются лишь на определенном уровне общефизиологического созревания. Поэтому молодой и взрослый организм обладают неодинаковой восприимчивостью к заболеваниям, по-разному реагируют на воздействие болезнетворных агентов.
Постнатальный период развития большинства млекопитающих животных характеризуется состоянием пониженной реактивности организма, выражающейся полным отсутствием или слабым проявлением неспецифических гуморальных факторов. Этот период характеризуется также неполноценной воспалительной реакцией и ограниченным проявлением специфических гуморальных факторов защиты. По мере развития реактивность организма животных постепенно усложняется и совершенствуется, что связано с развитием желез внутренней секреции, формированием определенного уровня обмена веществ, совершенствованием защитных приспособлений против инфекций, интоксикаций и так далее.
Клеточные факторы защиты в организме животных возникают раньше, чем гуморальные. У телят клеточная защитная функция организма, наиболее выраженная в первые дни после рождения. В более старшем возрасте степень фагоцитоза постепенно увеличивается с колебаниями опсоно-фагоцитарного показателя в сторону повышения или понижения в зависимости от условий содержания. Переход от молочных кормов на растительные снижает фагоцитарную активность лейкоцитов. Вакцинация телят в первые дни жизни способствует повышению активности фагоцитоза.
При этом у телят, родившихся от неиммунизированных коров, фагоцитарная активность лейкоцитов в 5 раз ниже, чем у телят, родившихся от коров, иммунизированных паратифозным антигеном. Кормление молозивом также способствовало повышению активности лейкоцитов.
Фагоцитарные реакции у телят повышаются до 5-дневного возраста, затем в возрасте 10 дней начинают резко снижаться. Наиболее низкие показатели фагоцитоза отмечаются в 20-дневном возрасте. Фагоцитарная активность лейкоцитов в этот период еще ниже, чем у однодневных телят. Начиная с 30-дневного возраста, наблюдается постепенное увеличение фагоцитарной активности лейкоцитов и интенсивности поглощения ими микроорганизмов. Максимальных величин эти показатели достигают в возрасте 6 месяцев. В дальнейшем показатели фагоцитоза изменяются, однако величины их остаются практически на уровне 6-месячного возраста. Следовательно, клеточные факторы защиты к этому возрасту в организме телят уже полностью сформированы.
У новорожденных телят нормальные агглютинины к гертнеровскому антигену отсутствуют и появляются лишь в 2...2,5-месячном возрасте. Телята, вакцинированные в первые дни жизни паратифозной вакциной, не вырабатывают антитела. Агглютинины к этому антигену появляются только в 10...12-дневном возрасте и до 1,5 месяцев образуются в низком титре. В первые 3...7 дней жизни телят они выражены слабо и достигают уровня взрослых животных лишь к 2-месячному возрасту.
Наименьший уровень бактерицидной активности сыворотки крови телят отмечается у новорожденных до приема молозива. На 3-й день после рождения бактерицидная активность сыворотки крови повышается, а к 2-месячному возрасту она практически достигает уровня взрослых животных.
У новорожденных телят до кормления молозивом не обнаруживается лизоцим. После выпойки молозива появляется лизоцим, однако уже к 10-му дню снижается почти в два раза. Однако к месячному возрасту титр лизоцима снова постепенно повышается. К этому времени телята уже способны самостоятельно вырабатывать лизоцим. В 2-месячном возрасте титр лизоцима достигает максимальной величины, затем до 6-месячного возраста количество его поддерживается примерно на одном уровне, после чего вновь в возрасте 12 месяцев титр снижается.
Как видно, в первые 10 дней жизни телят высокая способность лейкоцитов к фагоцитозу компенсирует недостаточность бактерицидной активности сыворотки крови. В более поздние сроки изменения бактерицидной активности сыворотки крови носят волнообразный характер, что, по-видимому, связано с условиями содержания и сезонами года.
Ягнята в первый день жизни имеют относительно высокий фагоцитарный показатель, который к 15-дневному возрасту резко снижается, затем вновь возрастает и достигает своего максимума к 2-месячному возрасту или несколько позже.
Довольно подробно изучена также возрастная динамика гуморальных факторов естественной резистентности организма у ягнят. Так, в первые дни жизни у них отмечаются пониженные показатели естественной резистентности. Способность к продуцированию антител у них появляется в 14...16-дневном возрасте и достигает к 40...60 дням уровня иммунологической реактивности взрослых животных. В первые дни жизни ягнят угнетение микробов при контакте с кровяной сывороткой выражено слабо, в 10...15-дневном возрасте бактерицидная активность сыворотки несколько повышается и к 40...60 дням достигает уровня, свойственного взрослым овцам.
У поросят от рождения до 6-месячного возраста также отмечается определенная закономерность изменений показателей клеточных и гуморальных факторов защиты.
У поросят наиболее низкие показатели фагоцитоза отмечаются в 10-дневном возрасте, в последующем до 6-месячного возраста наблюдается постепенное их повышение. То есть, к 10-дневному возрасту у поросят наблюдается резкое падение всех показателей фагоцитоза. Наиболее выраженное проявление фагоцитоза отмечается у поросят в 15-дневном возрасте. Поросята раннего отъема и искусственно вскормленные имеют более низкие показатели фагоцитарного индекса по сравнению с поросятами, вскормленными под свиноматкой, хотя на их росте ранний отъем от матки не отразился.
Наименьшие показатели опсоно-фагоцитарной реакции отмечаются в 20-дневном возрасте. В этот период снижается не только фагоцитарная активность лейкоцитов, но и уменьшается их количество в 1 мм3 крови (фагоцитарная емкость). Резкое снижение показателей фагоцитоза, по-видимому, связано с прекращением поступления с молозивом антител, способствующих фагоцитозу. С 20-дневного возраста фагоцитарная активность лейкоцитов постепенно возрастает и достигает максимума в 4-месячном возрасте.
Комплементарная активность у поросят начинает обнаруживаться лишь в 5-дневном возрасте и, постепенно нарастая, ко 2...3-му месяцу жизни достигает уровня взрослых животных.
Формирование высокого титра сывороточных белков у поросят происходит независимо от вакцинации свиноматок, к концу четвертой недели жизни. Бактерицидные свойства крови у поросят наиболее выражены к третьей неделе жизни.
В 2-дневном возрасте у поросят хорошо выражена способность сыворотки крови угнетать рост тест-микробов.
К 10-дневному возрасту происходит резкое снижение бактерицидной способности сыворотки. При этом уменьшается не только интенсивность подавления роста микробов сывороткой, но и продолжительность действия ее. В дальнейшем с увеличением возраста животных идет усиление бактерицидной активности сыворотки крови.
Следовательно, молодняк первых 3...4 дней жизни характеризуется слабой иммунологической зрелостью, его естественная резистентность к неблагоприятному воздействию факторов внешней среды низка, с чем связаны высокая заболеваемость и отход в этот период.
У птицы раннему периоду развития (60 дней) присуще слабое проявление гуморальных факторов неспецифического иммунитета организма. В противовес этим показателям в организме птицы на раннем этапе онтогенеза содержится высокое количество лизоцима. Что касается клеточных защитных факторов, то эти показатели достаточно высокие.
В период завершения ювенальной линьки и полового созревания организма каждый определенный показатель естественной резистентности организма имеет свою индивидуальную динамику изменения. Так, окислительно-восстановительная функция крови продолжает постоянно наращиваться. В 150-дневном возрасте комплементарная активность сыворотки крови у ремонтного молодняка достоверно увеличивается. Содержание лизоцима в сыворотке крови имеет четкую тенденцию к снижению. Бактерицидная активность сыворотки крови на этом этапе постэмбрионального развития птицы достоверно повышается и превосходит уровень 60-дневных цыплят. Период полового созревания птицы характеризовался некоторым снижением фагоцитарной интенсивности псевдоэозинофильных гранулоцитов и повышением процента фагоцитирующих псевдоэозинофильных гранулоцитов.
Третий период исследования по сравнению с первым и вторым в большей степени обуславливается яйценоскостью птицы. С началом яйцекладки и последующим ее повышением происходит более существенное снижение окислительно-восстановительной функции крови. Комплементарная активность сыворотки крови увеличивается с повышением яйценоскости и максимальное его количество зарегистрировано в 210-300-дневном возрасте, что соответствовало пику яйцекладки. Бактерицидная активность имеет закономерность к увеличению к началу яйцекладки до ее пика, а в дальнейшем снижается. Это, видимо, сопряжено с более интенсивной деятельностью органов яйцеобразования. С увеличением уровня яйцекладки фагоцитарная интенсивность и процент фагоцитирующих псевдоэозинофильных гранулоцитов у взрослой птицы по сравнению с молодками увеличивается. Таким образом, можно сказать, что на показатели естественной резистентности у птицы большое влияние оказывает уровень их продуктивности; чем выше продуктивность, тем напряженнее неспецифические защитные факторы организма.