Нервная и гуморальная регуляция функций. Особенности, знвчение. Гуморальная регуляция

Пермский Государственный

Технический Университет

Кафедра физической культуры.

Регуляция нервной деятельности: гуморальная и нервная.
Особенности функционирования ЦНС.

Выполнил: студент группы АСУ-01-1
Киселёв Дмитрий

Проверил: _______________________

_______________________

Пермь 2003 г.

Организм человека, как единая саморазвивающаяся и саморегулирующаяся система.

Все живое характеризуется четырьмя признаками: ростом, обменом веществ, раздражимостью и способностью к самовоспроизведению. Совокупность данных признаков свойственна только живым организмам. Человек, как и все другие живые существа также обладает этими способностями.

Нормальный здоровый человек не замечает внутренних процессов, происходящих у него в организме, например то, как его организм перерабатывает пищу. Это происходит потому, что в организме все системы (нервная, сердечно-сосудистая, дыхательная, пищеварительная, мочевыделительная, эндокринная, половая, скелетная, мышечная) гармонично взаимодействуют друг с другом без вмешательства в этот процесс непосредственно самого человека. Мы зачастую даже не догадываемся о том, как это происходит, и как управляются все сложнейшие процессы в нашем организме, как одна жизненно важная функция организма сочетается, взаимодействует с другой. Как природа или Бог позаботились о нас, какими инструментами снабдили наш организм. Рассмотрим механизму управления и регуляции в нашем организме.

В живом организме клетки, ткани, органы и системы органов работают как единое целое. Их согласованная работа регулируется двумя принципиально различными, но направленными на одно и то же способами: гуморально (от лат. "гумор" – жидкость: через кровь, лимфу, межклеточную жидкость) и нервно. Гуморальная регуляция осуществляется при помощи биологически активных веществ – гормонов. Гормоны выделяются железами внутренней секреции. Преимущество гуморальной регуляции в том, что гормоны по крови доставляются ко всем органам. Нервная регуляция осуществляется органами нервной системы и действует только на "орган-мишень". Нервная и гуморальная регуляция осуществляет взаимосвязанную и согласованную работу всех систем органов, поэтому организм функционирует как единое целое.

Гуморальная система

Гуморальная система регуляции обмена веществ в организме представляет собой совокупность желез внутренней и смешанной секреции, а также протоки, позволяющие биологически активным веществам (гормонам) достигать кровеносных сосудов или непосредственно органов, на которые оказывается воздействие.

Ниже приводится таблица, в которой представлены основные железы внутренней и смешанной секреции и выделяемые ими гормоны.

Железа

Гормон

Место действия

Физиологический эффект

Щитовидная

Тироксин

Весь организм

Ускоряет обмен веществ и обмен O2 в тканях

Тиреокальцитонин

Обмен Ca и P

Паращитовидная

Паратгормон

Кости, почки, желудочно-кишечный тракт

Обмен Ca и P

Поджелудочная

Весь организм

Регулирует обмен углеводов, стимулирует синтез белков

Глюкагон

Стимулирует синтез и распад гликогена

Надпочечники (корковый слой)

Кортизон

Весь организм

Обмен углеводов

Альдостерон

Канальцы почек

Обмен электролитов и воды

Надпочечники (мозговое вещество)

Адреналин

Мышцы сердца, гладкие мышцы артериол

Повышает частоту и силу сердечных сокращений, тонус артериол, повышает артериальное давление, стимулирует сокращение многих гладких мышц

Печень, скелетные мышцы

Стимулирует распад гликогена

Жировая ткань

Стимулирует распад липидов

Норадреналин

Артериолы

Повышает тонус артериол и артериальное давление

Гипофиз (передняя доля)

Соматотропин

Весь организм

Ускоряет рост мышц и костей, стимулирует синтез белка. Оказывает влияние на обмен углеводов и жиров

Тиреотропин

Щитовидная железа

Стимулирует синтез и секрецию гормонов щитовидной железы

Кортикотропин

Кора надпочечников

Стимулирует синтез и секрецию гормонов коры надпочечников

Гипофиз (задняя доля)

Вазопрессин

Собирательные трубочки почек

Облегчает обратное всасывание воды

Артериолы

Увеличивает тонус, повышает артериальное давление

Окситоцин

Гладкие мышцы

Сокращение мышц

Как видно из приведённой таблицы железы внутренней секреции оказывают влияние, как на обычные органы, так и на другие железы внутренней секреции (этим обеспечивается саморегуляция деятельности желез внутренней секреции). Малейшие нарушения в деятельности этой системы ведут к нарушениям развития целой системы органов (например, при гипофункции поджелудочной железы развивается сахарный диабет, а при гиперфункции передней доли гипофиза может развиться гигантизм).

Нехватка некоторых веществ в организме может привести к неспособности выработки некоторых гормонов в организме и как следствие к нарушению развития. Так например недостаточное потребление йода (J) в рационе питания может привести к невозможности выработки тироксина (гипофункция щитовидной железы), что может привести к развитию таких болезней как микседема (высыхает кожа, выпадают волосы, снижается обмен веществ) и даже кретинизм (задержка роста, умственного развития).

Нервная система

Нервная система является объединяющей и координирующей системой организма. Она включает головной и спинной мозг, нервы и связанные с ними структуры, например мозговые оболочки (слои соединительной ткани вокруг головного и спинного мозга).

Несмотря на вполне определенное функциональное разделение, обе системы в значительной степени связаны.

С помощью цереброспинальной системы (см ниже) мы ощущаем боль, температурные изменения (тепло и холод), прикосновение, воспринимаем вес и размеры предметов, осязаем структуру и форму, положение частей тела в пространстве, чувствуем вибрацию, вкус, запах, свет и звук. В каждом случае стимуляция чувствительных окончаний соответствующих нервов вызывает поток импульсов, которые передаются отдельными нервными волокнами от места воздействия стимула в соответствующий отдел головного мозга, где они интерпретируются. При формировании любого из ощущений импульсы распространяются по нескольким, разделенным синапсами, нейронам, пока не достигнут осознающих центров в коре головного мозга.

В центральной нервной системе полученная информация передается нейронами; образуемые ими проводящие пути называются трактами. Все ощущения, кроме зрительных и слуховых, интерпретируются в противоположной половине головного мозга. Например, прикосновение правой руки проецируется в левое полушарие мозга. Звуковые ощущения, идущие с каждой стороны, поступают в оба полушария. Зрительно воспринимаемые объекты тоже проецируются в обе половины мозга.

На рисунки слева показано анатомическое расположение органов нервной системы. По рисунку видно, что центральный отдел нервной системы (головной и спинной мозг) сосредоточены в голове и в позвоночном канале, в то время как органы периферийного отдела нервной системы (нервы и ганглии) рассредоточены по всему организму. Такое устройство нервной системы наиболее оптимально и выработалось эволюционно.

Вывод

Нервная и гуморальная системы, имеют одну и ту же цель – помочь организму развиться, выжить в изменяющихся условиях окружающей среды, поэтому бессмысленно говорить отдельно о нервной или гуморальной регуляции. Существует единая нервно-гуморальная регуляция, которая использует "гуморальные" и "нервные механизмы" для регуляции. "Гуморальные механизмы" задают общее направление в развитии органов организма, а "нервные механизмы" позволяют скорректировать развитие конкретного органа. Ошибочно предполагать, что нервная система дана нам лишь для того, чтобы мыслить, она - могучий инструмент, который также бессознательно регулирует такие жизненно-важные биологические процессы как переработка пищи, биологические ритмы и многое другое. Поразительно, но даже самый умный и активный человек использует лишь 4% возможностей своего мозга. Человеческий мозг – уникальная загадка, над которой бились с глубокой древности по наши дни и, возможно, будут биться не одну тысячу лет.

Список используемой литературы:

1. "Общая биология" под редакцией; изд. "Просвещение" 1975 г.

3. Энциклопедия "Кругосвет"

4. Личные конспекты по биологии 9-11 классы

Нервная регуляция осуществляется с помощью электрических импульсов, идущих по нервным клеткам. По сравнению с гуморальной она

  • происходит быстрее
  • более точная
  • требует больших затрат энергии
  • более эволюционно молодая.

Гуморальная регуляция процессов жизнедеятельности (от латинского слова гумор - «жидкость») осуществляется за счет веществ, выделяемых во внутреннюю среду организма (лимфу, кровь, тканевую жидкость).


Гуморальная регуляция может осуществляться с помощью:

  • гормонов - биологически активных (действующих в очень маленькой концентрации) веществ, выделяемых в кровь железами внутренней секреции;
  • других веществ . Например, углекислый газ

Все железы организма делятся на 3 группы

1) Железы внутренней секреции (эндокринные ) не имеют выводных протоков и выделяют свои секреты непосредственно в кровь. Секреты эндокринных желез называются гормонами , они обладают биологической активностью (действуют в микроскопической концентрации). Например: .


2) Железы внешней секреции имеют выводные протоки и выделяют свои секреты НЕ в кровь, а в какую-либо полость или на поверхность организма. Например, печень , слезные , слюнные , потовые .


3) Железы смешанной секреции осуществляют и внутреннюю, и внешнюю секрецию. Например

  • железа выделяет в кровь инсулин и глюкагон, а не в кровь (в 12-перстную кишку) - поджелудочный сок;
  • половые железы выделяют в кровь половые гормоны, а не в кровь - половые клетки.

Установите соответствие между органом (отделом органа), участвующим в регуляции жизнедеятельности организма человека, и системой, к которой он относится: 1) нервная, 2) эндокринная.
А) мост
Б) гипофиз
В) поджелудочная железа
Г) спинной мозг
Д) мозжечок

Ответ


Установите, в какой последовательности осуществляется гуморальная регуляция дыхания при мышечной работе в организме человека
1) накопление углекислого газа в тканях и крови
2) возбуждение дыхательного центра в продолговатом мозге
3) передача импульса к межреберным мышцам и диафрагме
4) усиление окислительных процессов при активной мышечной работе
5) осуществление вдоха и поступление воздуха в легкие

Ответ


Установите соответствие между процессом, происходящим при дыхании человека, и способом его регуляции: 1) гуморальная, 2) нервная
А) возбуждение рецепторов носоглотки частицами пыли
Б) замедление дыхания при погружении в холодную воду
В) изменение ритма дыхания при избытке углекислого газа в помещении
Г) нарушение дыхания при кашле
Д) изменение ритма дыхания при уменьшении содержания углекислого газа в крови

Ответ


1. Установите соответствие между характеристикой железы и видом, к которому ее относят: 1) внутренней секреции, 2) внешней секреции. Запишите цифры 1 и 2 в правильном порядке.
А) имеют выводные протоки
Б) вырабатывают гормоны
В) обеспечивают регуляцию всех жизненно важных функций организма
Г) выделяют ферменты в полость желудка
Д) выводные протоки выходят на поверхность тела
Е) вырабатываемые вещества выделяются в кровь

Ответ


2. Установите соответствие между характеристикой желез и их типом: 1) внешней секреции, 2) внутренней секреции. Запишите цифры 1 и 2 в правильном порядке.
А) образуют пищеварительные ферменты
Б) выделяют секрет в полость тела
В) выделяют химически активные вещества – гормоны
Г) участвуют в регуляции процессов жизнедеятельности организма
Д) имеют выводные протоки

Ответ


Установите соответствие между железами и их типами: 1) внешней секреции, 2) внутренней секреции. Запишите цифры 1 и 2 в правильном порядке.
А) эпифиз
Б) гипофиз
В) надпочечник
Г) слюнная
Д) печень
Е) клетки поджелудочной железы, вырабатывающие трипсин

Ответ


Установите соответствие между примером регуляции работы сердца и типом регуляции: 1) гуморальная, 2) нервная
А) учащение сердцебиений под влиянием адреналина
Б) изменение работы сердца под влиянием ионов калия
В) изменение сердечного ритма под влиянием вегетативной системы
Г) ослабление деятельности сердца под влиянием парасимпатической системы

Ответ


Установите соответствие между железой в организме человека и её типом: 1) внутренней секреции, 2) внешней секреции
А) молочная
Б) щитовидная
В) печень
Г) потовая
Д) гипофиз
Е) надпочечники

Ответ


1. Установите соответствие между признаком регуляции функций в организме человека и его видом: 1) нервная, 2) гуморальная. Запишите цифры 1 и 2 в правильном порядке.
А) доставляется к органам кровью
Б) большая скорость ответной реакции
В) является более древней
Г) осуществляется с помощью гормонов
Д) связана с деятельностью эндокринной системы

Ответ


2. Установите соответствие между характеристиками и видами регуляции функций организма: 1) нервная, 2) гуморальная. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) включается медленно и действует долго
Б) сигнал распространяется по структурам рефлекторной дуги
В) осуществляется действием гормона
Г) сигнал распространяется с током крови
Д) включается быстро и действует коротко
Е) эволюционно более древняя регуляция

Ответ


Выберите один, наиболее правильный вариант. Какие из перечисленных желез выделяют свои продукты через специальные протоки в полости органов тела и непосредственно в кровь
1) сальные
2) потовые
3) надпочечники
4) половые

Ответ


Установите соответствие между железой организма человека и типом, к которому её относят: 1) внутренней секреции, 2) смешанной секреции, 3) внешней секреции
А) поджелудочная
Б) щитовидная
В) слёзная
Г) сальная
Д) половая
Е) надпочечник

Ответ


Выберите три варианта. В каких случаях осуществляется гуморальная регуляция?
1) избыток углекислого газа в крови
2) реакция организма на зеленый сигнал светофора
3) избыток глюкозы в крови
4) реакция организма на изменение положения тела в пространстве
5) выделение адреналина при стрессе

Ответ


Установите соответствие между примерами и видами регуляции дыхания у человека: 1) рефлекторная, 2) гуморальная. Запишите цифры 1 и 2 в порядке, соответствующем буквам.
А) остановка дыхания на вдохе при входе в холодную воду
Б) увеличение глубины дыхания из-за увеличения концентрации углекислого газа в крови
В) кашель при попадании пищи в гортань
Г) небольшая задержка дыхания из-за снижения концентрации углекислого газа в крови
Д) изменение интенсивности дыхания в зависимости от эмоционального состояния
Е) спазм сосудов мозга из-за резкого увеличения концентрации кислорода в крови

Ответ


Выберите три железы внутренней секреции.
1) гипофиз
2) половые
3) надпочечники
4) щитовидные
5) желудочные
6) молочные

Ответ


Выберите три варианта. Гуморальные воздействия на физиологические процессы в организме человека
1) осуществляются с помощью химически активных веществ
2) связаны с деятельностью желёз внешней секреции
3) распространяются медленнее, чем нервные
4) происходят с помощью нервных импульсов
5) контролируются продолговатым мозгом
6) осуществляются через кровеносную систему

Ответ


Выберите три верных ответа из шести и запишите цифры, под которыми они указаны. Что характерно для гуморальной регуляции организма человека?
1) ответная реакция четко локализована
2) сигналом служит гормон
3) включается быстро и действует мгновенно
4) передача сигнала только химическая через жидкие среды организма
5) передача сигнала осуществляется через синапс
6) ответная реакция действует продолжительное время

Ответ

© Д.В.Поздняков, 2009-2019

Гуморальная регуляция

Гуморальная регуляция - один из эволюционно ранних механизмов регуляции процессов жизнедеятельности в организме, осуществляемый через жидкие среды организма (кровь, лимфу, тканевую жидкость, полость рта) с помощью гормонов, выделяемых клетками, органами, тканями. У высокоразвитых животных и человека гуморальная регуляция подчинена нервной регуляции и составляет совместно с ней единую систему нейрогуморальной регуляции. Продукты обмена веществ действуют не только непосредственно на эффекторные органы, но и на окончания чувствительных нервов (хеморецепторы) и нервные центры, вызывая гуморальным или рефлекторным путём те или иные реакции. Так, если в результате усиленной физической работы в крови увеличивается содержание CO 2 , то это вызывает возбуждение дыхательного центра, что ведёт к усилению дыхания и выведению из организма излишков CO 2 . Гуморальная передача нервных импульсов химическими веществами, т. н. медиаторами, осуществляется в центральной и периферической нервной системе. Наряду с гормонами важную роль в гуморальной регуляции играют продукты промежуточного обмена.

Биологическая активность жидких сред организма обусловлена соотношением содержания катехоламинов (адреналина и норадреналина , их предшественников и продуктов распада), ацетилхолина , гистамина , серотонина и других биогенных аминов, некоторых полипептидов и аминокислот, состоянием ферментных систем, присутствием активаторов и ингибиторов , содержанием ионов, микроэлементов и т. д. Учение о гуморальной регуляции разработано рядом отечественных (В. Я. Данилевский, А. Ф. Самойлов, К. М. Быков, Л. С. Штерн и др.) и зарубежных учёных (австрийского - О. Лёви, американского - У. Кеннон и др.).

Литература

  1. Быков К. М., Кора головного мозга и внутренние органы, 2 изд., М. - Л., ;
  2. Мак-Ильвеин Г., Биохимия и центральная нервная система, пер. с англ.. М., ;
  3. Monnier М., Functions of the nervous system, v. 1, Amst., .

Wikimedia Foundation . 2010 .

Смотреть что такое "Гуморальная регуляция" в других словарях:

    Большой Энциклопедический словарь

    - (от лат. humor жидкость), один из механизмов координации процессов жизнедеятельности в организме, осуществляемый через жидкие среды организма (кровь, лимфу, тканевую жидкость) с помощью биологически активных веществ, выделяемых клетками, тканями… … Биологический энциклопедический словарь

    ГУМОРАЛЬНАЯ РЕГУЛЯЦИЯ - (от лат. humor жидкость) координация физиологических и биохимических процессов в организме, осуществляемая через жидкие среды (кровь, лимфа, тканевая жидкость) с помощью различных веществ (в т. ч. гормонов). У высокоразвитых организмов подчинена… … Большая психологическая энциклопедия

    гуморальная регуляция - Один из механимов ругуляции жизнедеятельности организма, осуществляемый через его жидкие среды (кровь, лимфа, гемолимфа, тканевая жидкость); в основе Г.р. секреция биологически активных веществ, прежде всего гормонов. [Арефьев В.А., Лисовенко Л.А … Справочник технического переводчика

    Координация физиологических и биохимических процессов, осуществляемая через жидкие среды организма (кровь, лимфу, тканевую жидкость) с помощью биологически активных веществ (метаболиты, гормоны, гормоноиды ионы), выделяемых клетками,… … Большая советская энциклопедия

    Координация физиологических и биохимических процессов в организме, осуществляемая через жидкие среды (кровь, лимфа, тканевая жидкость) с помощью гормонов и различных продуктов обмена веществ. У высокоразвитых животных и человека подчинена нервной … Энциклопедический словарь

    Humoral regulation гуморальная регуляция. Oдин из механимов ругуляции жизнедеятельности организма, осуществляемый через его жидкие среды (кровь, лимфа, гемолимфа, тканевая жидкость); в основе Г.р. секреция биологически активных веществ, прежде… … Молекулярная биология и генетика. Толковый словарь.

    Регуляция жизнедеятельности, осуществляемая через жидкие среды организма (кровь, лимфу, тканевую жидкость) с помощью биологически активных веществ, выделяемых клетками, тканями и органами в процессе их функционирования … Большой медицинский словарь

    Гуморальная регуляция - Регуляция функций организма или отдельного органа или ткани при участии различных химических веществ (медиаторов, гормонов, метаболитов и других биологически активных веществ), содержащихся в жидких средах организма (в крови, лимфе, межтканевой… … Адаптивная физическая культура. Краткий энциклопедический словарь

    ГУМОРАЛЬНАЯ РЕГУЛЯЦИЯ - [от лат. humor влага, жидкость и лат. regulare приводить в порядок, налаживать] регуляция жизнедеятельности организма, осуществляющаяся через жидкие среды (кровь, лимфу, тканевую жидкость) с помощью биологически активных веществ, выделяемых… … Психомоторика: cловарь-справочник

В целом организме нервный и гуморальный механизмы регуляции действуют совместно. Оба механизма регуляции взаимосвязаны. Химические регуляторы, образующиеся в организме, влияют и на нервные клетки, изменяя их состояние. Влияют на состояние нервной системы и образующиеся в железах внутренней секреции гормоны. Но функциями эндокринных желез управляет нервная система. Ей в организме принадлежит ведущая роль в регуляции всей деятельности. Гуморальные факторы - звено в нейро-гуморальной регуляции. В качестве примера напомним регуляцию осмотического давления крови при жажде. Вследствие недостатка воды повышается осмотическое давление во внутренней среде организма. Это приводит к раздражению специальных рецепторов - осморецепторов. Возникшее возбуждение по нервным путям направляется в центральную нервную систему. Оттуда импульсы направляются к железе внутренней секреции - гипофизу - и стимулируют выделение в кровь антидиуретического гормона гипофиза. Этот гормон, попадая в кровь, приносится к извитым канальцам почек и усиливает обратное всасывание воды из первичной мочи в кровь. Таким образом уменьшается количество выводимой с мочой воды и восстанавливается нарушенное осмотическое давление в организме.

При избытке сахара в крови нервная система стимулирует функцию внутрисекреторной части поджелудочной железы. Теперь в кровь поступает больше гормона инсулина, и лишний сахар под его влиянием откладывается в печени и мышцах в виде гликогена. При усиленной мышечной работе, когда повышается потребление сахара и в крови его становится недостаточно, усиливается деятельность надпочечников. Гормон надпочечников адреналин способствует превращению гликогена в сахар. Так нервная система, воздействуя на железы внутренней секреции, стимулирует или тормозит отделение ими биологически активных веществ.

Влияния нервной системы осуществляются через секреторные нервы. Кроме того, нервы подходят к кровеносным сосудам эндокринных желез. Меняя просвет сосудов, они влияют на деятельность этих желез.

И наконец, в эндокринных железах располагаются чувствительные окончания центростремительных нервов, сигнализирующих в центральную нервную систему о состоянии эндокринной железы. Таким образом, нервная система оказывает влияние на состояние желез внутренней секреции. Состояние железы, выработка ею гормона в большой степени зависят от нервных влияний. В связи с этим многие эндокринные заболевания развиваются вследствие поражения нервной системы (сахарный диабет, базедова болезнь, расстройство функции половых желез). Например, описан случай тяжелого заболевания щитовидной железы, развившегося у матери, потерявшей за одну ночь двух детей, умерших от дифтерии.

Не только нервная система оказывает влияние на состояние эндокринных желез, но и гормоны действуют на нервную систему. Большое влияние они оказывают на деятельность коры больших полушарий головного мозга. Издавна было известно, что кастрация, т. е. удаление половых желез у домашних животных, делает их выносливыми и спокойными (например, вол в сравнении с быком).

Если повышается функция щитовидной железы (базедова болезнь), человек становится очень раздражительным, эмоциональным. Наоборот, при понижении функции щитовидной железы (микседема) человек становится вялым, пассивным, эмоции у него снижены. Если функция щитовидной железы понижена с раннего детства, то у ребенка отстает физическое и умственное развитие (кретинизм). У животных с удаленной щитовидной железой труднее образуются условные рефлексы.

Тесная связь деятельности желез внутренней секреции и центральной нервной системы подтверждается и особенностями строения эндокринной системы. В промежуточном отделе головного мозга имеется образование - гипоталамус, который является одновременно и нервным центром, и своеобразной железой внутренней секреции. Он образован нервными клетками, но не совсем обычными: они способны вырабатывать особые вещества, которые поступают в кровь, притекающую от гипоталамуса к гипофизу. Активные вещества гипоталамуса побуждают гипофиз вырабатывать другие гормоны; к ним относится гормон роста, тиреотропный гормон (он активизирует работу щитовидной железы), гонадотропные гормоны (они активизируют работу половых желез) и др. Под влиянием гормонов гипофиза другие эндокринные железы вырабатывают свои гормоны, которые действуют на различные органы, ткани и клетки организма.

Между гипоталамусом, гипофизом и периферическими эндокринными железами существует прямая и обратная связь . Например, гипофиз вырабатывает тиреотропный гормон , который стимулирует деятельность щитовидной железы. Под влиянием тиреотропного гормона гипофиза щитовидная железа вырабатывает свой гормон - тироксин , который влияет на все органы и ткани организма. Тироксин влияет и на сам гипофиз, как бы информируя его о результатах его деятельности: чем больше гипофиз выделяет тиреотропного гормона, тем больше щитовидная железа выделяет тироксина. Но если тиреотропный гормон гипофиза стимулирует работу щитовидной железы (это прямая связь), то, напротив, тироксин тормозит деятельность гипофиза, уменьшая выработку тиреотропного гормона (это обратная связь). Механизм прямой и обратной связи имеет очень важное значение в деятельности эндокринной системы, так как благодаря ему работа всех желез внутренней секреции не выходит за границы физиологической нормы.

На рисунке 3 представлена схема нейро-эндокринной регуляции деятельности организма.

Изучение функциональных отношений между разными железами внутренней секреции показало, что почти все они влияют Друг на друга, тесно взаимодействуя.

Регуляция функций организма - процесс сложный, осуществляющийся нейро-гуморальным путем. При этом нервные факторы регуляции взаимодействуют с гуморальными. Даже передача возбуждения с одного нейрона на другой или на исполнительные органы (мышцы, железы), как показали исследования, осуществляется при участии химических посредников - медиаторов. Самым распространенным передатчиком (медиатором) возбуждения является ацетилхолин . Нервная клетка сама вырабатывает ацетилхолин, затрачивая значительное количество энергии. Ацетилхолин накапливается в окончаниях нервных клеток в виде мелких пузырьков. Когда возбуждение достигает окончаний отростков нервной клетки, ацетилхолин проходит через мембрану клетки и способствует передаче возбуждения другой клетке.

Кроме ацетилхолина, обнаружены и другие передатчики нервных импульсов. В окончаниях симпатических нервов обнаружены медиаторы адреналин и норадреналин.

Вопросы и задания к главе "Регуляция функций организма"

1. Чем отличаются гормоны от ферментов?

2. Какова роль гормонов в регуляции функций организма?

3. Какие вы знаете химические вещества, принимающие участие в регуляции функций организма?

4. Как нервная система поддерживает постоянство внутренней среды организма? Приведите примеры.

5. Приведите примеры условных рефлексов у человека.

6. Приведите примеры нейро-гуморальной регуляции функций в организме человека.

Важнейшие понятия теории физиологических регуляций.

Прежде чем рассматривать механизмы нейрогуморальных регу­ляций, остановимся на важнейших понятиях этого раздела фи­зиологии. Некоторые из них разработаны кибернетикой. Зна­ние таких понятий облегчает понимание регуляций физиологи­ческих функций и решение ряда проблем в медицине.

Физиологическая функция - проявление жизнедеятель­ности организма или его структур (клетки, органа, системы клеток и тканей), направленное на сохранение жизни и выпол­нение генетически и социально обусловленных программ.

Система - совокупность взаимодействующих элементов, осуществляющих функцию, которая не может быть выполнена одним отдельным элементом.

Элемент - структурная и функциональная единица системы.

Сигнал - разнообразные виды вещества и энергии, пере­дающие информацию.

Информация сведения, сообщения, передаваемые по каналам связи и воспринимаемые организмом.

Раздражитель - фактор внешней или внутренней среды, воздействие которого на рецепторные образования организма вызывает изменение процессов жизнедеятельности. Раздражи­тели подразделяют на адекватные и неадекватные. К восприятиюадекватных раздражителей рецепторы организма приспо­соблены и активируются при очень малой энергии воздействую­щего фактора. Например, для активации рецепторов сетчатки глаза (палочек и колбочек) достаточно 1 -4 кванта света.Неадекватными являются раздражители, к восприятию которых чувствительные элементы организма не приспособлены. Например, колбочки и палочки сетчатки глаза не приспособлены к восприятию механических воздействий и не обеспечивают появления ощущения даже при значительной силе воздействия на них. Лишь при очень большой силе воздействия (удар) может произойти их активация и возникновение ощущения света.

Раздражители подразделяют также по их силе на подпоро- говые, пороговые и сверхпороговые. Сила подпороговых раздражителей недостаточна для возникновения регистри­руемой ответной реакции организма или его структур. Поро­говым раздражителем называют такой, минимальная сила которого достаточна для возникновения выраженной ответной реакции. Сверхпороговые раздражители имеют большую силу, чем пороговые раздражители.

Раздражитель и сигнал - сходные, но не однозначные по­нятия. Один и тот же раздражитель может иметь разное сиг­нальное значение. Например, писк зайца может быть сигна­лом, предупреледающим об опасности сородичей, но для лисы этот же звук - сигнал о возможности добычи пищи.

Раздражение - воздействие факторов окружающей или внутренней среды на структуры организма. Надо отметить, что в медицине термин "раздражение" иногда применяется и в другом смысле - для обозначения ответной реакции организ­ма или его структур на действие раздражителя.

Рецепторы молекулярные или клеточные структуры, воспринимающие действие факторов внешней или внутренней среды и передающие информацию о сигнальном значении раз­дражителя на последующие звенья регуляторного контура.

Понятие рецепторы рассматривается с двух точек зрения: с молекулярно-биологической и морфофункциональной. В по­следнем случае говорят о сенсорных рецепторах.

С молекулярно-биологической точки зрения рецепторы - специализированные белковые молекулы, встроенные в кле­точную мембрану или находящиеся в цитозоле и ядре. Каждый вид таких рецепторов способен взаимодействовать только со строго определенными сигнальными молекулами - лиганда- ми. Например, для так называемых адренорецепторов лиган- дом являются молекулы гормона адреналина и норадреналина. Такие рецепторы встроены в мембраны многих клеток орга­низма. Роль лигандов в организме выполняют биологически активные вещества: гормоны, нейромедиаторы, факторы рос­та, цитокины, простагландины. Они выполняют свою сигналь­ную функцию, находясь в биологических жидкостях в очень малых концентрациях. Например, содержание гормонов в кро­ви обнаруживается в пределах Ю -7 -10" 10 моль/л.

С морфофункциональной точки зрения рецепторы (сен­сорные рецепторы) - это специализированные клетки или нервные окончания, функцией которых является восприятие действия раздражителей и обеспечение возникновения воз­буждения в нервных волокнах. В таком понимании термин "ре­цептор" чаще всего применяется в физиологии, когда речь идет о регуляциях, обеспечиваемых нервной системой.

Совокупность однотипных сенсорных рецепторов и область организма, в которой они сосредоточены, называют рецеп­тор ным полем.

Функцию сенсорных рецепторов в организме выполняют:

    специализированные нервные окончания. Они могут быть свободными, не покрытыми оболочками (например, бо­левые рецепторы кожи) или иметь оболочку (например, так­тильные рецепторы кожи);

    специализированные нервные клетки (нейросенсорные клетки). У человека такие сенсорные клетки имеются в слое эпителия, выстилающего поверхность носовой полости; они обеспечивают восприятие пахучих веществ. В сетчатке глаза нейросенсорные клетки представлены колбочками и палочка­ми, которые воспринимают световые лучи;

3) специализированные эпителиальные клетки - это раз­вивающиеся из эпителиальной ткани клетки, которые приоб­рели высокую чувствительность к действию определенных ви­дов раздражителей и могут передавать информацию об этих раздражителях на нервные окончания. Такие рецепторы име­ются во внутреннем ухе, вкусовых луковицах языка и вестибу­лярном аппарате, обеспечивая возможность восприятия соот­ветственно звуковых волн, вкусовых ощущений, положения и движения тела.

Регулирование постоянный контроль и необходимая коррекция функционирования системы и ее отдельных струк­тур с целью достижения полезного результата.

Физиологическая регуляция - процесс, обеспечиваю­щий сохранение относительного постоянства или изменение в желательном направлении показателей гомеостаза и жизнен­ных функций организма и его структур.

Для физиологических регуляций жизненных функций орга­низма характерны следующие черты.

Наличие замкнутых контуров регулирования. В про­стейший регуляторный контур (рис. 2.1) входят блоки: регу­лируемый параметр (например, уровень содержания глюко­зы в крови, величина кровяного давления), управляющее устройство - в целостном организме это нервный центр, в отдельной клетке - геном, эффекторы - органы и системы, которые под влиянием сигналов от управляющего устройства изменяют свою работу и непосредственно влияют на величину регулируемого параметра.

Взаимодействие отдельных функциональных блоков такой регуляторной системы осуществляется по каналам прямой и обратной связи. По каналам прямой связи информация пере­дается от управляющего устройства к эффекторам, а по кана­лам обратной связи - от рецепторов (датчиков), контролиру-

Рис. 2.1. Схема замкнутого контура регулирования

ющих величину регулируемого параметра, - к управляющему устройству (например, от рецепторов скелетных мышц - к спинному и головному мозгу).

Таким образом, обратная связь (ее в физиологии еще назы­вают обратной афферентацией) обеспечивает поступление к управляющему устройству сигнализации о величине (состоя­нии) регулируемого параметра. Она обеспечивает контроль за ответом эффекторов на управляющий сигнал и результатом действия. Например, если целью движения руки человека бы­ло раскрытие учебника физиологии, то обратная связь осу­ществляется проведением импульсации по афферентным нервным волокнам от рецепторов глаз, кожи и мышц в голов­ной мозг. Такая импульсация обеспечивает возможность сле­жения за движениями руки. Благодаря этому нервная система может осуществлять коррекцию движения для достижения не­обходимого результата действия.

С помощью обратной связи (обратной афферентации) про­исходит замыкание регуляторного контура, объединение его элементов в замкнутую цепь - систему элементов. Только при наличии замкнутого контура регулирования возможно осу­ществление устойчивой регуляции параметров гомеостаза и приспособительных реакций.

Обратную связь подразделяют на отрицательную и поло­жительную. В организме подавляющее число обратных связей - отрицательные. Это значит, что под влиянием поступающей по их каналам информации регулирующая система возвращает отклонившийся параметр к исходному (нормальному) значе­нию. Таким образом, отрицательная обратная связь необходи­ма для сохранения устойчивости уровня регулируемого пока­зателя. В противоположность этому положительная обратная связь способствует изменению величины регулируемого пара­метра, переводу его на новый уровень. Так, в начале интенсив­ной мышечной нагрузки импульсация от рецепторов скелет­ных мышц способствует развитию увеличения уровня артери­ального кровяного давления.

Функционирование нейрогуморальных механизмов регуля­ции в организме не всегда направлено только на удержание го- меостатических констант на неизменном, строго стабильном уровне. В ряде случаев для организма жизненно важно, чтобы регулирующие системы перестроили свою работу и изменили величину гомеостатической константы, изменили так называ­емую «установочную точку» регулируемого параметра.

Установочная точка (англ. set point). Это тот уровень регулируемого параметра, на котором регулирующая система стремится удерживать величину этого параметра.

Понимание наличия и направленности изменений устано­вочной точки гомеостатических регуляций помогает опреде­лить причину возникновения патологических процессов в ор­ганизме, прогнозировать их развитие и найти правильный путь лечения и профилактики.

Рассмотрим это на примере оценки температурных реакций организма. Даже когда человек здоров, то величина темпера­туры сердцевины тела на протяжении суток колеблется между 36 °С и 37 °С, причем в вечерние часы - ближе к 37 °С, ночью и ранним утром - к 36 °С. Это свидетельствует о наличии цир- кадного ритма изменения величины установочной точки тер­морегуляции. Но особенно ярко заявляет о себе наличие изме­нений установочной точки температуры сердцевины тела при ряде заболеваний человека. Например, при развитии инфек­ционных заболеваний терморегуляторные центры нервной системы получают сигнализацию о появлении в организме бактериальных токсинов и перестраивают свою работу так, чтобы повысить уровень температуры тела. Такая реакция ор­ганизма на внедрение инфекции выработана филогенетически. Она полезна, так как при повышенной температуре иммунная система функционирует активнее, а условия развития инфек­ции ухудшаются. Вот почему не всегда следует назначать жа­ропонижающие средства при развитии лихорадки. Но по­скольку очень высокая температура сердцевины тела (более 39 °С, особенно у детей) может быть опасна для организма (прежде всего в плане повреждений нервной системы), то в каждом отдельном случае врач должен принимать индивиду­альное решение. Если при температуре тела 38,5 - 39 °С име­ются такие признаки, как мышечная дрожь, озноб, когда чело­век кутается в одеяло, стремится согреться, то ясно, что меха­низмы терморегуляции продолжают мобилизацию всех источ­ников теплопродукции и способов сохранения тепла в организме. Это значит, что еще не достигнута установочная точка и в ближайшее время температура тела будет расти, до­стигая опасных границ. Но если при той же температуре у больного появилось обильное потоотделение, исчезла мышеч­ная дрожь и он раскрывается, то ясно, что установочная точка уже достигнута и механизмы терморегуляции будут препят­ствовать дальнейшему повышению температуры. В такой си­туации врач на определенное время в ряде случаев может воз­держаться от назначения жаропонижающих средств.

Уровни регулирующих систем. Выделяют следующие уровни:

    субклеточный (например, саморегуляция цепочек биохи­мических реакций, объединенных в биохимические циклы);

    клеточный - регуляция внутриклеточных процессов с помощью биологически активных веществ (аутокриния) и ме­таболитов;

    тканевый (паракриния, креаторные связи регуляция взаимодействия клеток: слипание, объединение в ткань, синх­ронизацию деления и функциональной активности);

    органный - саморегуляция отдельных органов, функци­онирование их как единого целого. Такие регуляции осущест­вляются как за счет гуморальных механизмов (паракриния, креаторные связи), так и нервных клеток, тела которых на­ходятся во внутриорганных вегетативных ганглиях. Эти нейроны взаимодействуют, составляя внутриорганные реф­лекторные дуги. Вместе с тем через них реализуются и регу- ляторные влияния центральной нервной системы на внутрен­ние органы;

    организменный регуляция гомеостаза, целостность организма, формирование регуляторных функциональных систем, обеспечивающих целесообразные поведенческие реакции, приспособление организма к изменениям условий окружающей среды.

Таким образом, в организме существует много уровней регулирующих систем. Простейшие системы организма объ­единяются в более сложные, способные выполнять новые функции. При этом простые системы, как правило, подчиня­ются управляющим сигналам со стороны более сложных сис­тем. Такое подчинение называют иерархией регулирующих систем.

Более подробно механизмы осуществления этих регуляций будут рассмотрены ниже.

Единство и отличительные особенности нервных и гумо­ральных регуляций. Механизмы регуляции физиологических функций традиционно подразделяют на нервные и гумораль­

ные, хотя в действительности они образуют единую регулятор- ную систему, обеспечивающую поддержание гомеостаза и приспособительную деятельность организма. Эти механизмы имеют многочисленные связи как на уровне функционирова­ния нервных центров, так и при передаче сигнальной информа­ции эффекторным структурам. Достаточно сказать, что при осуществлении простейшего рефлекса как элементарного ме­ханизма нервных регуляций передача сигнализации с одной клетки на другую осуществляется посредством гуморальных факторов - нейромедиаторов. Чувствительность сенсорных рецепторов к действию раздражителей и функциональное со­стояние нейронов изменяется поддействием гормонов, нейро­медиаторов, ряда других биологически активных веществ, а также простейших метаболитов и минеральных ионов (К + Na + СаCI -). В свою очередь, нервная система может за­пускать или выполнять коррекцию гуморальных регуляций. Гуморальные регуляции в организме находятся под контролем нервной системы.

Особенности нервных и гуморальных регуляций в организме. Гуморальные механизмы филогенетически более древние, они имеются даже у одноклеточных животных и при­обретают большое разнообразие у многоклеточных и особенно у человека.

Нервные механизмы регуляций образовались филогенети­чески более поздно и формируются постепенно в онтогенезе человека. Такие регуляции возможны лишь в многоклеточных структурах, имеющих нервные клетки, объединяющиеся в нервные цепи и составляющие рефлекторные дуги.

Гуморальные регуляции осуществляются путем распро­странения сигнальных молекул в жидкостях организма по прин­ципу "всем, всем, всем", или принципу "радиосвязи"

Нервные регуляции осуществляются по принципу "письмо с адресом", или "телеграфной связи" Сигнализация передает­ся от нервных центров к строго определенным структурам, на­пример к точно определенным мышечным волокнам или их группам в конкретной мышце. Только в этом случае возможны целенаправленные, координированные движения человека.

Гуморальные регуляции, как правило, осуществляются медленнее, чем нервные. Скорость проведения сигнала (по­тенциала действия) в быстрых нервных волокнах достигает 120 м/с, вто время как скорость транспорта сигнальной моле-

кулы с током крови в артериях приблизительно в 200 раз, а в капиллярах - в тысячи раз меньше.

Приход нервного импульса к органу-эффектору практически мгновенно вызывает физиологический эффект (например, со­кращение скелетной мышцы). Реакция на многие гормональ­ные сигналы более медленная. Например, проявление ответной реакции на действие гормонов щитовидной железы и коры над­почечников происходит через десятки минут и даже часы.

Гуморальные механизмы имеют преимущественное значе­ние в регуляции процессов обмена веществ, скорости деления клеток, роста и специализации тканей, полового созревания, адаптации к изменению условий внешней среды.

Нервная система в здоровом организме оказывает влияние на все гуморальные регуляции, осуществляет их коррекцию. Вместе с тем у нервной системы имеются свои специфические функции. Она регулирует жизненные процессы, требующие быстрых реакций, обеспечивает восприятие сигналов, прихо­дящих от сенсорных рецепторов органов чувств, кожи и внут­ренних органов. Регулирует тонус и сокращения скелетных мышц, которые обеспечивают поддержание позы и перемеще­ние тела в пространстве. Нервная система обеспечивает про­явление таких психических функций, как ощущение, эмоции, мотивации, память, мышление, сознание, регулирует поведен­ческие реакции, направленные на достижение полезного при­способительного результата.

Несмотря на функциональное единство и многочисленные взаимосвязи нервных и гуморальных регуляций в организме, в целях удобства изучения механизмов осуществления этих ре­гуляций рассмотрим их в отдельности.

Характеристика механизмов гуморальной регуля­ции в организме. Гуморальные регуляции осуществляются за счет передачи сигналов с помощью биологически активных ве­ществ через жидкие среды организма. К биологически актив­ным веществам организма относят: гормоны, нейромедиаторы, простагландины, цитокины, факторы роста, эндотелии, азота оксид и ряд других веществ. Для выполнения их сигнальной функции достаточно очень малого количества этих веществ. На­пример, гормоны выполняют свою регуляторную роль при кон­центрации их в крови в пределах Ю -7 -10 0 моль/л.

Гуморальные регуляции подразделяют на эндокринные и местные.

Эндокринные регуляции осуществляются благодаря функ­ционированию желез внутренней секреции (эндокринных же­лез), которые представляют собой специализированные орга­ны, выделяющие гормоны. Гормоны - биологически актив­ные вещества, вырабатываемые эндокринными железами, пе­реносимые кровью и оказывающие специфические регуляторные влияния на жизнедеятельность клеток и тканей. Отличительной особенностью эндокринных регуляций являет­ся то, что железы внутренней секреции выделяют гормоны в кровь и таким путем эти вещества доставляются практически ко всем органам и тканям. Однако ответная реакция на дей­ствие гормона может быть лишь со стороны тех клеток (мише­ней), на мембранах, в цитозоле или ядре которых имеются ре­цепторы к соответствующему гормону.

Отличительной особенностью местных гуморальных регуляций является то, что биологически активные вещест­ва, вырабатываемые клеткой, не поступают в кровоток, а действуют на продуцирующую их клетку и ее ближайшее окру­жение, распространяясь за счет диффузии по межклеточной жидкости. Такие регуляции подразделяют на регуляцию обме­на веществ в клетке за счет метаболитов, аутокринию, пара- кринию, юкстакринию, взаимодействия через межклеточные контакты.

    Регуляция обмена веществ в клетке за счет метабо­литов. Метаболиты - конечные и промежуточные продукты процессов обмена веществ в клетке. Участие метаболитов в регуляции клеточных процессов обусловлено наличием в об­мене веществ цепочек функционально связанных биохимиче­ских реакций - биохимических циклов. Характерно, что уже в таких биохимических циклах имеются главные признаки био­логических регуляций, наличие замкнутого контура регулиро­вания и отрицательной обратной связи, обеспечивающей за­мыкание этого контура. Например, цепочки таких реакций ис­пользуются при синтезе ферментов и веществ, участвующих в образовании аденозинтрифосфорной кислоты (АТФ). АТФ- вещество, в котором аккумулируется энергия, легко использу­емая клетками для самых разных процессов жизнедеятельнос­ти: движения, синтеза органических веществ, роста, транспор­та веществ через клеточные мембраны.

    Аутокринный механизм. При таком типе регуляций синтезированная в клетке сигнальная молекула выходит через

Рецептор r t Эндокриния

о? м ooo

Аугокриния Паракриния Юкстакриния t

Рис. 2.2. Виды гуморальных регуляций в организме

клеточную мембрану в межклеточную жидкость и связывается с рецептором на наружной поверхности мембраны (рис. 2.2). Та­ким образом клетка реагирует на синтезированную в ней же сиг­нальную молекулу - лиганд. Присоединение лиганда к рецептору на мембране вызывает активацию этого рецептора, а он запуска­ет целый каскад биохимических реакций в клетке, которые обес­печивают изменение ее жизнедеятельности. Аутокринная регуля­ция часто используется клетками иммунной и нервной систем. Этот путь ауторегуляции необходим для поддержания стабильно­го уровня секреции некоторых гормонов. Например, в предотвра­щении избыточной секреции инсулина Р-клетками поджелудоч­ной железы имеет значение тормозное действие секретируемого ими же гормона на активность этих клеток.

Паракринный механизм. Осуществляется путем сек­реции клеткой сигнальных молекул, которые выходят в меж­клеточную жидкость и влияют на жизнедеятельность сосед­них клеток (рис. 2.2). Отличительной чертой этого вида регу­ляций является то, что в передаче сигнала имеется этап диф­фузии молекулы лиганда через межклеточную жидкость от одной клетки к другим соседним клеткам. Так, клетки подже­лудочной железы, секретирующие инсулин, влияют на клетки этой железы, секретирующие другой гормон глюкагон. Факторы роста и интерлейкины влияют на клеточное деле­ние, простагландины - на тонус гладких мышц, мобилизацию Са 2+ Такой тип передачи сигналов важен в регуляции роста тканей при развитии эмбриона, заживлении ран, для роста поврежденных нервных волокон и при передаче возбуждения в синапсах.

Исследованиями последних лет показано, что некоторые клетки (особенно нервные) для сохранения своей жизнедея­тельности должны постоянно получать специфические сигна-

ЛЬ1 от соседних клеток. Среди таких специфических сигналовособенноважны вещества - факторы роста(NGF). При дли­тельномотсутствии воздействия этих сигнальных молекулнервныеклетки запускают программу самоуничтожения. Та­кой механизм клеточной смерти называют апоптозом.

Паракринная регуляция часто используется одновременно с аутокринной. Например, при передаче возбуждения в синап­сах сигнальные молекулы, выделяемые нервным окончанием, связываютсяне только с рецепторами соседней клетки (на постсинаптической мембране), но и с рецепторами на мембра­не этого же нервного окончания (т.е. пресинаптической мем­бране).

    Юкстакринный механизм. Осуществляется путем передачи сиг­нальных молекул непосредственно от наружной поверхности мембраны одной клетки на мембрану другой. Это происходит при условии непо­средственного контакта (прикрепления, адгезионного сцепления) мем­бран двух клеток. Такое прикрепление происходит, например, при взаи­модействии лейкоцитов и тромбоцитов с эндотелием кровеносных капил­ляров в месте, где имеется воспалительный процесс. На мембранах, выстилающих капилляры клеток, в месте воспаления появляются сиг­нальные молекулы, которые связываются с рецепторами определенных видов лейкоцитов. Такая связь приводит к активации прикрепления лейко­цитов к поверхности кровеносного сосуда. За этим может последовать це­лый комплекс биологических реакций, обеспечивающих переход лейкоци­тов из капилляра в ткань и подавление ими воспалительной реакции.

    Взаимодействия через межклеточные контакты. Осущест­вляются через межмембранные соединения (вставочные диски, нексу­сы). В частности, весьма распространена передача сигнальных молекул и некоторых метаболитов через щелевые контакты - нексусы. При обра­зовании нексусов особые белковые молекулы (коннексоны) клеточной мембраны объединяются по 6 штук так, что формируют кольцо с порой внутри. На мембране соседней клетки (точно напротив) формируется та­кое же кольцевидное образование с порой. Две центральные поры, объ­единяясь, формируют канал, пронизывающий мембраны соседних клеток. Ширина канала достаточна для прохождения многих биологически актив­ных веществ и метаболитов. Через нексусы свободно проходят ионы Са 2+ являющиеся мощными регуляторами внутриклеточных процессов.

Благодаря высокой электропроводности нексусы способствуют рас­пространению локальных токов между соседними клетками и формиро­ванию функционального единства ткани. Особенно выражены такие взаимодействия в клетках сердечной мышцы и гладких мышц. Нарушение состояния межклеточных контактов приводит к патологии сердца, изме­

нению тонуса мышц сосудов, слабости сокращения матки н изменению ряда других регуляций.

Межклеточные контакты, выполняющие роль упрочения физической связи между мембранами, называют плотными соединениями и адгезион­ными поясами. Такие контакты могут иметь вид кругового пояса, прохо­дящего между боковыми поверхностями клетки. Уплотнение и увеличе­ние прочности этих соединений обеспечивается прикреплением на по­верхности мембран белков миозина, актинина, тропомиозина, винкулина и др. Плотные соединения способствуют объединению клеток в ткань, их слипанию и устойчивости ткани к механическим воздействиям. Они участвуют также в формировании барьерных образований организма. Плотные контакты особенно выражены между эндотелием, выстилаю­щим сосуды головного мозга. Они уменьшают проницаемость этих сосу­дов для циркулирующих в крови веществ.

Во всех гуморальных регуляциях, осуществляемых с учас­тием специфических сигнальных молекул, важную роль игра­ют клеточные и внутриклеточные мембраны. Поэтому для по­нимания механизма гуморальных регуляций необходимо знать элементы физиологии клеточных мембран.

Рис. 2.3. Схема строения клеточной мембраны

Белок-переносчик

(вторично-активный

транспорт)

Мембранный белок

Белок РКС

Двойной слой фосфолипидов

Антигены

Внеклеточная поверхность

Внутриклеточная среда

Особенности строения и свойства клеточных мембран. Для всех клеточных мембран характерен один принцип строе­ния (рис. 2.3). Их основу составляют два слоя липидов (моле­кул жиров, среди которых больше всего фосфолипидов, но имеется также холестерол и гликолипиды). Молекулы мем­бранных липидов имеют головку (участок, притягивающий во­ду и стремящийся взаимодействовать с ней, называемый гид­

рофильным) и хвост, который является гидрофобным (оттал­кивается от молекул воды, избегает их соседства). В результа­те такого различия свойств головки и хвоста липидных молекул последние при попадании на поверхность воды выстраиваются рядами: головка к головке, хвост к хвосту и образуют двойной слой, в котором гидрофильные головки обращены к воде, а гид­рофобные хвосты - друг к другу. Хвосты находятся внутри этого двойного слоя. Наличие липидного слоя образует замкнутое пространство, изолирует цитоплазму от окружающей водной среды и создает препятствие для прохождения воды и раствори­мых в ней веществ через клеточную мембрану. Толщина такого липидного бислоя составляет около 5 нм.

В состав мембран также входят белки. Их молекулы по объему и по массе в 40-50 раз больше, чем молекулы мем­бранных липидов. За счет белков толщина мембраны достига­ет?-10 нм. Несмотря на то что суммарные массы белков и ли­пидов в большинстве мембран почти равны, количество моле­кул белков в мембране в десятки раз меньше, чем молекул липидов. Обычно белковые молекулы расположены разроз­ненно. Они как бы растворены в мембране, могут в ней сме­щаться и изменять свое положение. Это послужило поводом к тому, что строение мембраны назвали жидкостно-мозаич­ным. Молекулы липидов тоже могут смещаться вдоль мембра­ны и даже перепрыгивать из одного липидного слоя в другой. Следовательно, мембрана имеет признаки текучести и вместе с тем обладает свойством самосборки, может восстанавли­ваться после повреждений за счет свойства липидных молекул выстраиваться в двойной липидный слой.

Белковые молекулы могут пронизывать всю мембрану так, что их концевые участки выступают за ее поперечные пределы. Такие белки называют трансмембранными или интеграль­ными. Есть также белки, только частично погруженные в мем­брану или располагающиеся на ее поверхности.

Белки клеточных мембран выполняют многочисленные функции. Для осуществления каждой функции геном клетки обеспечивает запуск синтеза специфического белка. Даже в относительно просто устроенной мембране эритроцита имеет­ся около 100 разных белков. Среди важнейших функций мем­бранных белков отмечаются: 1) рецепторная - взаимодей­ствие с сигнальными молекулами и передача сигнала в клетку; 2) транспортная - перенос веществ через мембраны и обес­печение обмена между цитозолем и окружающей средой. Су­ществует несколько разновидностей белковых молекул (транслоказ), обеспечивающих трансмембранный транспорт. Среди них есть белки, формирующие каналы, которые прони­зывают мембрану и через них идет диффузия определенных ве­ществ между цитозолем и внеклеточным пространством. Та­кие каналы чаще всего ионоселективные, т.е. пропускают ио­ны только одного вещества. Есть также каналы, избиратель­ность которых меньшая, например они пропускают ионы Na + и К + , К + и С1~. Есть также белки-переносчики, которые обес­печивают транспорт вещества через мембрану за счет измене­ния своего положения в этой мембране; 3) адгезивная - белки совместно с углеводами участвуют в осуществлении адгезии (слипание, склеивание клеток при иммунных реакциях, объ­единение клеток в слои и ткани); 4) ферментативная - некото­рые встроенные в мембрану белки выполняют роль катализа­торов биохимических реакций, протекание которых возможно только в контакте с клеточными мембранами; 5) механическая - белки обеспечивают прочность и эластичность мембран, их связь с цитоскелетом. Например, в эритроцитах такую роль выполняет белок спектрин, который в виде сетчатой структу­ры прикреплен к внутренней поверхности мембраны эритро­цита и имеет связь с внутриклеточными белками, составляю­щими цитоскелет. Это придает эритроцитам эластичность, способность менять и восстанавливать форму при прохожде­нии через кровеносные капилляры.

Углеводы составляют лишь 2-10% от массы мембраны, количество их в разных клетках изменчиво. Благодаря углево­дам осуществляются некоторые виды межклеточных взаимо­действий, они принимают участие в узнавании клеткой чуже­родных антигенов и совместно с белками создают своеобраз­ную антигенную структуру поверхностной мембраны соб­ственной клетки. По таким антигенам клетки узнают друг друга, объединяются в ткань и на короткое время слипаются для пере­дачи сигнальных молекул. Соединения белков с сахарами назы­вают гликопротеинами. Если же углеводы соединяются с липи- дами, то такие молекулы называют гликолипидами.

Благодаря взаимодействию входящих в мембрану веществ и относительной упорядоченности их расположения клеточная мембрана приобретает ряд свойств и функций, не сводимых к простой сумме свойств образующих ее веществ.

Функцииклеточных мембран и механизмы их реализа-

К основным функциям клеточных мембран относят- с оздание оболочки (барьера), отделяющего цитозоль от

^жающей среды, и определение границ и формы клетки;о\ беспечениемежклеточных контактов, сопровождающихсяпанием мембран (адгезия). Межклеточная адгезия важна ° я объединенияоднотипных клеток в ткань, образования гис-гематических барьеров, осуществления иммунных реакций;^ч 0 бнару>кение сигнальных молекул и взаимодействие с ними, а такжепередача сигналов внутрь клетки; 4) обеспечение мем­браннымибелками-ферментами катализа биохимическихреакций, идущих в примембранном слое. Некоторые из этихбелковвыполняют также и роль рецепторов. Связь лиганда стакимрецептором активирует его ферментативные свойства; 5) обеспечение поляризации мембраны, генерация разностиэлектрических потенциалов между наружной и внутреннейстороной мембраны; 6) создание иммунной специфичности клетки за счет наличия в структуре мембраны антигенов. Роль антигенов, как правило, выполняют выступающие над поверх­ностью мембраны участки белковых молекул и связанные с ними молекулы углеводов. Иммунная специфичность имеет значение при объединении клеток в ткань и взаимодействии с клетками, осуществляющими иммунный надзор в организме; 7) обеспечение избирательной проницаемости веществ через мембрану и транспорта их между цитозолем и окружающей средой (см. ниже).

Приведенный перечень функций клеточных мембран сви­детельствует о том, что они принимают многогранное участие в механизмах нейрогуморальных регуляций в организме. Без знания ряда явлений и процессов, обеспечиваемых мембран­ными структурами, невозможно понимание и осознанное вы­полнение некоторых диагностических процедур и лечебных мероприятий. Например, для правильного применения многих лекарственных веществ необходимо знание того, в какой мере каяедое из них проникает из крови в тканевую жидкость и в ци­тозоль.

Диффуз ия и транспорт веществ через клеточные Мембраны. Переход веществ через клеточные мембраны осу- ствляется за счет разных видов диффузии, или активного

транспорта.

Простая диффузия осуществляется за счет градиентов концентрации определенного вещества, электрического заря­да или осмотического давления между сторонами клеточной мембраны. Например, среднее содержание ионов натрия в плазме крови составляет 140 мМ/л, а в эритроцитах - при­близительно в 12 раз меньше. Эта разность концентрации (градиент) создает движущую силу, которая обеспечивает пе­реход натрия из плазмы в эритроциты. Однако скорость такого перехода мала, так как мембрана имеет очень низкую прони­цаемость для ионовNa + Гораздо больше проницаемость этой мембраны для калия. На процессы простой диффузии не за­трачивается энергия клеточного метаболизма. Прирост скоро­сти простой диффузии прямо пропорционален градиенту кон­центрации вещества между сторонами мембраны.

Облегченная диффузия, как и простая, идет по градиенту концентрации, но отличается от простой тем, что в переходе ве­щества через мембрану обязательно участвуют специфические молекулы-переносчики. Эти молекулы пронизывают мембрану (могут формировать каналы) или, по крайней мере, с ней связа­ны. Транспортируемое вещество должно связаться с перенос­чиком. После этого переносчик меняет свою локализацию в мембране или свою конформацию таким образом, что доставля­ет вещество на другую сторону мембраны. Если для трансмем­бранного перехода вещества необходимо участие переносчика, то вместо термина "диффузия" часто используют терминтранспорт вещества через мембрану.

При облегченной диффузии (в отличие от простой), если происходит увеличение градиента трансмембранной концентрации вещества, то ско­рость перехода его через мембрану возрастает лишь до момента, пока не будут задействованы все мембранные переносчики. При дальнейшем увеличении такого градиента скорость транспорта будет оставаться неиз­менной; это называют явлением насыщения. Примерами транспорта ве­ществ путем облегченной диффузии могут служить: перенос глюкозы из крови в мозг, реабсорбция аминокислот и глюкозы из первичной мочи в кровь в почечных канальцах.

Обменная диффузия - транспорт веществ, при котором может происходить обмен молекулами одного и того же ве­щества, находящимися по разные стороны мембраны. Концен­трация вещества с каждой стороны мембраны остается при этом неизменной.

Разновидностью обменной диффузии является обмен моле­кулы одного вещества на одну или более молекул другого ве­щества. Например, в гладкомышечных волокнах сосудов и бронхов одним из путей удаления ионов Са 2+ из клетки явля­ется обмен их на внеклеточные ионыNa + На три иона входя­щего натрия из клетки удаляется один ион кальция. Создается взаимообусловленное движение натрия и кальция через мем­брану в противоположных направлениях (этот вид транспорта называют антипортом). Таким образом клетка освобожда­ется от избыточного Са 2+ , а это является необходимым усло­вием для расслабления гладкомышечного волокна. Знание ме­ханизмов транспорта ионов через мембраны и способов влия­ния на этот транспорт - непременное условие не только для понимания механизмов регуляции жизненных функций, но и правильного выбора лекарственных препаратов для лечения большого числа заболеваний (гипертонической болезни, бронхиальной астмы, сердечных аритмий, нарушений водно- солевого обмена и др.).

Активный транспорт отличается от пассивного тем, что идет против градиентов концентрации вещества, используя энергию АТФ, образующуюся за счет клеточного метаболиз­ма. Благодаря активному транспорту могут преодолеваться си­лы не только концентрационного, но и электрического гради­ента. Например, при активном транспортеNa + из клетки на­ружу преодолевается не только концентрационный градиент (снаружи содержаниеNa + в 10-15 раз больше), но и сопро­тивление электрического заряда (снаружи клеточная мембра­на у абсолютного большинства клеток заряжена положитель­но, и это создает противодействие выходу положительно заря­женногоNa + из клетки).

Активный транспорт Na + обеспечивается белкомNa + , К + зависимой АТФазой. В биохимии окончание "аза" добавляется к названию белка в том случае, если он обладает ферментатив­ными свойствами. Таким образом, названиеNa + , К + -зависи- мая АТФаза означает, что это вещество - белок, который рас­щепляет аденозинтрифосфорную кислоту только при обяза­тельном наличии взаимодействия с ионамиNa + и К + Энер­гия, освобождаемая в результате расщепления АТФ, идет на вынос из клетки трех ионов натрия и транспорт внутрь клетки двух ионов калия.

Имеются также белки, осуществляющие активный транс­порт ионов водорода, кальция и хлора. В волокнах скелетных мышц Са 2+ -зависимая АТФаза встроена в мембраны сарко- плазматического ретикулума, который образует внутрикле­точные емкости (цистерны, продольные трубочки), накапли­вающие Са 2+ Кальциевый насос за счет энергии расщепле­ния АТФ переносит ионы Са 2+ из саркоплазмы в цистерны ре­тикулума и может создавать в них концентрацию Са + приближающуюся к 1(Г 3 М, т.е. в 10 ООО раз большую, чем в саркоплазме волокна.

Вторично-активный транспорт характеризуется тем, что перенос вещества через мембрану идет за счет градиента концентрации другого вещества, для которого имеется меха­низм активного транспорта. Чаще всего вторично-активный транспорт происходит за счет использования градиента на­трия, т.е.Na + идет через мембрану в сторону его меньшей кон­центрации и тянет за собой другое вещество. При этом обычно используется встроенный в мембрану специфический белок- переносчик.

Например, транспорт аминокислот и глюкозы из первичной мочи в кровь, осуществляемый в начальном участке почечных канальцев, про­исходит благодаря тому, что белок-переносчик мембраны канальцевого эпителия связывается с аминокислотой и ионом натрия и только тогда из­меняет свое положение в мембране таким образом, что переносит амино­кислоту и натрий в цитоплазму. Для наличия такого транспорта необхо­димо, чтобы снаружи клетки концентрация натрия была гораздо больше, чем внутри.

Для понимания механизмов гуморальных регуляций в орга­низме необходимо знание не только структуры и проницаемос­ти клеточных мембран для различных веществ, но и структуры и проницаемости более сложных образований, находящихся между кровью и тканями различных органов.

Физиология гистогематических барьеров (ГГБ). Гисто- гематические барьеры - это совокупность морфологических, физиологических и физико-химических механизмов, функцио­нирующих как единое целое и регулирующих взаимодействия крови и органов. Гистогематические барьеры участвуют в со­здании гомеостаза организма и отдельных органов. Благодаря наличию ГГБ каждый орган живет в своей особой среде, кото­рая может значительно отличаться от плазмы крови по составуотдельныхингредиентов. Особенно мощные барьеры сущест­вуют между кровью и мозгом, кровью и тканью половых желез,кровьюи камерной влагой глаза. Непосредственный контакт с кровьюимеет слой барьера, образованный эндотелием крове­носныхкапилляров, далее идет базальная мембрана сперици­тами (средний слой) изатем - адвентициальные клетки орга­нов и тканей (наружный слой). Гистогематические барьеры,изменяясвою проницаемость для различных веществ, могут ограничивать или же облегчать их доставку к органу. Для рядатоксичныхвеществ они непроницаемы. В этом проявляется их защитная функция.

Гематоэнцефалический барьер (ГЭБ) - это совокуп­ность морфологических структур, физиологических и физико- химических механизмов, функционирующих как единое целое и регулирующих взаимодействие крови и ткани мозга. Морфо­логической основой ГЭБ является эндотелий и базальная мембрана мозговых капилляров, интерстициальные элементы и гликокаликс, нейроглия, своеобразные клетки которой (аст- роциты) охватывают своими ножками всю поверхность капил­ляра. В барьерные механизмы входят также транспортные системы эндотелия капиллярных стенок, включающие пино- и экзоцитоз, эндоплазматическую сеть, образование каналов, ферментные системы, модифицирующие или разрушающие поступающие вещества, а также белки, выполняющие функ­цию переносчиков. В структуре мембран эндотелия капилля­ров мозга, так же как и в ряде других органов, обнаружены белки аквапорины, создающие каналы, избирательно пропус­кающие молекулы воды.

Капилляры мозга отличаются от капилляров других органов тем, что эндотелиальные клетки образуют непрерывную стенку. В местах контакта наружные слои эндотелиальных клеток сли­ваются, образуя так называемые плотные контакты.

Среди функций ГЭБ выделяют защитную и регулирующую. Он защищает мозг от действия чужеродных и токсичных ве­ществ, участвует в транспорте веществ между кровью и моз­гом и создает тем самым гомеостаз межклеточной жидкости мозга и ликвора.

Гематоэнцефалический барьер обладает избирательной проницаемостью для различных веществ. Некоторые биологи­чески активные вещества (например, катехоламины) практи­чески не проходят через этот барьер. Исключение составляют лишь небольшие участки барьера на границе с гипофизом, эпифизом и некоторыми участками гипоталамуса, где прони­цаемость ГЭБ для всех веществ высокая. В этих областях об­наружены пронизывающие эндотелий щели или каналы, по которым проникают вещества из крови во внеклеточную жид­кость мозговой ткани или в сами нейроны.

Высокая проницаемость ГЭБ в этих областях позволяет биологически активным веществам достигать тех нейронов ги­поталамуса и железистых клеток, на которых замыкается регу- ляторный контур нейроэндокринных систем организма.

Характерной чертой функционирования ГЭБ является ре­гуляция проницаемости для веществ адекватно сложившим­ся условиям. Регуляция идет за счет: 1) изменения площади открытых капилляров, 2) изменения скорости кровотока, 3) изменения состояния клеточных мембран и межклеточно­го вещества, активности клеточных ферментных систем, пино-и экзоцитоза.

Считается, что ГЭБ, создавая значительное препятствие для проникновения веществ из крови в мозг, вместе с тем хо­рошо пропускает эти вещества в обратном направлении из мозга в кровь.

Проницаемость ГЭБ для различных веществ сильно разли­чается. Жирорастворимые вещества, как правило, проникают через ГЭБ легче, чем водорастворимые. Относительно легко проникают кислород, углекислый газ, никотин, этиловый спирт, героин, жирорастворимые антибиотики (хлорамфени- кол и др.).

Нерастворимые в липидах глюкоза и некоторые незаменимые амино­кислоты не могут проходить в мозг путем простой диффузии. Они узнают­ся и транспортируются специальными переносчиками. Транспортная система настолько специфична, что различает стереоизомеры D- иL-глюкозы.D-глюкоза транспортируется, аL-глюкоза - нет. Этот транс­порт обеспечивается встроенными в мембрану белками-переносчиками. Транспорт нечувствителен к инсулину, но подавляется цитохолазином В.

Аналогичным образом транспортируются большие нейтральные ами­нокислоты (например, фенилаланин).

Есть и активный транспорт. Например, за счет активного транспорта против градиентов концентрации переносятся ио­ны Na + К + , аминокислота глицин, выполняющая функцию тормозного медиатора.

Приведенные материалы характеризуют способы проник­новения биологически важных веществ через биологические барьеры. Они необходимы для понимания гуморальных регу­ляций в организме.

Контрольные вопросы и задания

    Каковы основные условия сохранения жизнедеятельности ор­ганизма?

    Каково взаимодействие организма с внешней средой? Дайте определение понятия адаптации к среде существования.

    Какова внутренняя среда организма и ее составляющие?

    Что такое гомеостаз и гомеостатические константы?

    Назовите границы колебаний жестких и пластичных гомео- статических констант. Дайте определение понятия об их циркад- ных ритмах.

    Перечислите важнейшие понятия теории гомеостатических регуляций.

7 Дайте определение раздражения и раздражителей. Как класси­фицируются раздражители?

      В чем различие понятия "рецептор" с молекулярно-биологи­ческой и морфофункциональной точки зрения?

      Дайте определение понятия лигандов.

      Что такое физиологические регуляции и замкнутый контур регулирования? Каковы его составляющие?

      Назовите виды и роль обратных связей.

      Дайте определение понятия об установочной точке гомео­статических регуляций.

      Какие существуют уровни регулирующих систем?

      В чем заключаются единство и отличительные особенности нервных и гуморальных регуляций в организме?

      Какие существуют виды гуморальных регуляций? Дайте их ха­рактеристику.

      Каково строение и свойства клеточных мембран?

17 Каковы функции клеточных мембран?

        В чем заключаются диффузия и транспорт веществ через кле­точные мембраны?

        Дайте характеристику и приведите примеры активного мем­бранного транспорта.

        Дайте определение понятия гистогематических барьеров.

        Что такое гематоэнцефалический барьер и какова его роль? t;