Механизмы всасывания, транспорта и распределения лекарственных веществ в организм. Транспорт и распределение лекарств в организме. Связывание лекарственных веществ белками плазмы крови. Транспорт через гистогематические барьеры. Депонирование лекарств в т

Большинство процессов жизнедеятельности, таких, как всасывание, выделение, проведение нервного импульса, мышечное сокращение, синтез АТФ, поддержание постоянства ионного состава и содержания воды связано с переносом веществ через мембраны. Этот процесс в биологических системах получил название транспорта . Обмен веществ между клеткой и окружающей её средой происходит постоянно. Механизмы транспорта веществ в клетку и из неё зависят от размеров транспортируемых частиц. Малые молекулы и ионы транспортируются клеткой непосредственно через мембрану в форме пассивного и активного транспорта.

Пассивный транспорт осуществляется без затрат энергии, по градиенту концентрации путем простой диффузии, фильтрации, осмоса или облегченной диффузии.

Диффузия проникновение веществ через мембрану по градиенту концентрации (из области, где их концентрация выше, в область, где их концентрация ниже); этот процесс происходит без затрат энергии вследствие хаотического движения молекул. Диффузный транспорт веществ (вода, ионы) осуществляется при участии интегральных белков мембраны, в которых имеются молекулярные поры (каналы, через которые проходят растворенные молекулы и ионы), либо при участии липидной фазы (для жирорастворимых веществ). С помощью диффузии в клетку проникают растворенные молекулы кислорода и углекислого газа, а также яды и лекарственные препараты.

Рис. Виды транспорта через мембрану.1 – простая диффузия; 2 – диффузия через мембранные каналы; 3 – облегченная диффузия с помощью белков-переносчиков; 4 – активный транспорт.

Облегченная диффузия. Транспорт веществ через липидный бислой с помощью простой диффузии совершается с малой скоростью, особенно в случае заряженных частиц, и почти не контролируется. Поэтому в процессе эволюции для некоторых веществ появились специфические мембранные каналы и мембранные переносчики, которые способствуют повышению скорости переноса и, кроме того, осуществляют селективный транспорт. Пассивный транспорт веществ с помощью переносчиков называется облегченной диффузией . Специальные белки-переносчики (пермеаза) встроены в мембрану. Пермеазы избирательно связываются с тем или иным ионом или молекулой и переносят их через мембрану. При этом частицы перемещаются быстрее, чем при обычной диффузии.

Осмос поступление в клетки воды из гипотонического раствора .

Фильтрация - просачивание веществ поры в сторону меньших значений давления. Примером фильтрации в организме является перенос воды через стенки кровеносных сосудов, выдавливание плазмы крови в почечные канальцы.

Рис. Движение катионов по электрохимическому градиенту.

Активный транспорт. Если бы в клетках существовал только пассивный транспорт, то концентрации, давления и др. величины вне и внутри клетки сравнялись бы. Поэтому существует другой механизм, работающий в направлении против электрохимического градиента и происходящий с затратой энергии клеткой. Перенос молекул и ионов против электрохимического градиента, осуществляемый клеткой за счет энергии метаболических процессов, называется активным транспортом.Он присущ только биологическим мембранам. Активный перенос вещества через мембрану происходит за счет свободной энергии, высвобождающейся в ходе химических реакций внутри клетки. Активный транспорт в организме создает градиенты концентраций, электректрических потенциалов, давлений, т.е. поддерживает жизнь в организме.

Активный транспорт заключается в перемещении веществ против градиента концентрации с помощью транспортных белков (порины, АТФ-азы и др.), образующих мембранные насосы, с затратой энергии АТФ (калий-натриевый насос, регуляция концентрации в клетках ионов кальция и магния, поступление моносахаридов, нуклеотидов, аминокислот). Изучены 3 основные системы активного транспорта, которые обеспечивают перенос ионов Na, K, Ca, H через мембрану.

Механизм. Ионы К + и Na + неравномерно распределены по разные стороны мембраны: концентрация Na + снаружи > ионов K + , а внутри клетки K + > Na + . Эти ионы диффундируют через мембрану по направлению электрохимического градиента, что приводит к его выравниванию. Na-K насосы входят в состав цитоплазматических мембран и работают за счет энергии гидролиза молекул АТФ с образованием молекул АДФ и неорганического фосфата Ф н : АТФ=АДФ+Ф н. Насос работает обратимо: градиенты концентраций ионов способствуют синтезу молекул АТФ из мол-л АДФ и Ф н: АДФ+Ф н =АТФ.

Na + /К + -насос представляет собой трансмембранный белок, способный к конформационным изменениям, вследствие чего он может присоединять как «K + », так и «Na + ». За один цикл работы насос выводит из клетки три «Na + » и заводит два «К + » за счет энергии молекулы АТФ. На работу натрий-калиевого насоса тратится почти треть всей энергии, необходимой для жизнедеятельности клетки.

Через мембрану могут переноситься не только отдельные молекулы, но и твердые тела (фагоцитоз ), растворы (пиноцитоз ). Фагоцитоз захват и поглощение крупных частиц (клеток, частей клеток, макромолекул) и пиноцитоз захват и поглощение жидкого материала (раствор, коллоидный раствор, суспензия). Образующиеся пиноцитозные вакуоли имеют размеры от 0,01 до 1-2 мкм. Затем вакуоль погружается в цитоплазму и отшнуровывается. При этом стенка пиноцитозной вакуоли полностью сохраняет структуру породившей ее плазматической мембраны.

Если вещество транспортируется внутрь клетки, то такой вид транспорта называется эндоцитозом (перенос в клетку путем прямого пино-или фагоцитоза), если наружу, то – экзоцитозом (перенос из клетки путем обратного пино - или фагоцитоза). В первом случае на наружной стороне мембраны образуется впячивание, которое постепенно превращается в пузырек. Пузырек отрывается от мембраны внутри клетки. Такой пузырек содержит в себе транспортируемое вещество, окруженное билипидной оболочкой (везикулой). В дальнейшем везикула сливается с какой-нибудь клеточной органеллой и выпускает в неё своё содержимое. В случае экзоцитоза процесс происходит в обратной последовательности: везикула подходит к мембране с внутренней стороны клетки, сливается с ней и выбрасывает своё содержимое в межклеточное пространство.

Пиноцитоз и фагоцитоз – принципиально сходные процессы, в которых можно выделить четыре фазы: поступление веществ путем пино-или фагоцитоза, их расщепление под действием ферментов выделяемых лизосомами, перенос продуктов расщепления в цитоплазму (вследствие изменения проницаемости мембран вакуолей) и выделение наружу продуктов обмена. К фагоцитозу способны многие простейшие, некоторые лейкоциты. Пиноцитоз наблюдается в эпителиальных клетках кишечника, в эндотелии кровеносных капилляров.

Всасывание (абсорбция) - это перенос лекарственного вещества из места введения в системный кровоток. Естественно, что при энтеральном способе введения ЛС, высвобождающееся из лекарственной формы, через эпителиальные клетки ЖКТ попадает в кровь, а затем уже распределяется по организму. Однако и при парентеральных путях введения ЛС, чтобы попасть к месту реализации своего фармакологического эффекта, должно, как минимум, пройти через эндотелий сосудов, т. е. при любом способе введения для достижения органа-мишени препарату необходимо проникнуть через разнообразные биологические мембраны эпителиальных и (или) эндотелиальных клеток.

Мембрана представлена бислоем липидов (фосфолипидов), пронизанных белками. Каждый фосфолипид имеет 2 гидрофобных «хвостика», обращенных внутрь, и гидрофильную «головку».

Существует несколько вариантов прохождения лекарственного вещества через биологические мембраны:

    Пассивная диффузия.

    Фильтрация через поры.

    Активный транспорт.

    Пиноцитоз.

Пассивная диффузия - основной механизм всасывания лекарств. Перенос лекарственных веществ осуществляется через липидную мембрану по градиенту концентрации (из области большей концентрации в область меньшей концентрации). При этом размер молекул не столь существенен как при фильтрации (рис. 2).

Рис. 2. Пассивная диффузия

Факторы, влияющие на скорость пассивной диффузии:

    Поверхность всасывания (основным местом всасывания большей части ЛС является проксимальная часть тонкого кишечника).

    Кровоток в месте всасывания (в тонком кишечнике он больше, чем в желудке, поэтому и всасывание больше).

    Время контакта ЛС с всасывательной поверхностью (при усиленной перистальтике кишечника всасывание ЛС уменьшается, при ослабленной - увеличивается).

    Степень растворимости ЛС в липидах (так как мембрана содержит липиды, то лучше всасываются липофильные (неполярные) вещества).

    Степень ионизации ЛС. Если ЛС при значениях рН, свойственных средам организма, находится главным образом в неионизированном виде, оно лучше растворимо в липидах и хорошо проникает через биологические мембраны. Если вещество ионизировано, оно плохо проникает через мембраны, но обладает лучшей водорастворимостью.

    Градиент концентрации.

    Толщина мембраны .

Жидкости организма в физиологических условиях имеют рН 7,3–7,4. Иной рН имеют содержимое желудка и кишечника, моча, воспаленные ткани и ткани в состоянии гипоксии. рН среды определяет степень ионизации молекул слабых кислот и слабых оснований (слабых оснований среди ЛС больше, чем слабых кислот) согласно формуле Гендерсона-Хассельбаха.

Для слабых кислот:

для слабых оснований:

Зная рН среды и рКа вещества (табличные данные) можно определить степень ионизации лекарства, а значит, и степень его всасывания из ЖКТ, реабсорбции или экскреции почками при разных значениях рН мочи.

Отсюда следует, что неионизированных форм атропина в кислой среде желудка значительно меньше, чем ионизированных (на 1 неионизированную форму приходится 10 7,7 ионизированных), а значит, в желудке он всасываться практически не будет.

Пример 2.

Определить, будет ли фенобарбитал (рКа 7,4) реабсорбироваться в «кислой» моче (рН 6,4). Фенобарбитал - слабое основание.

Отсюда следует, что неионизированных молекул фенобарбитала в этих условиях в 10 раз меньше, чем ионизированных, следовательно, он будет плохо реабсорбироваться в «кислой» моче и хорошо выводиться.

При передозировке фенобарбитала подкисление мочи является одним из методов борьбы с интоксикацией.

Фильтрация осуществляется через поры, имеющиеся между клетками эпидермиса слизистой оболочки ЖКТ, роговицы, эндотелия капилляров и так далее (большинство капилляров мозга не имеет таких пор (рис. 3)). Эпителиальные клетки разделены очень узкими промежутками, через которые проходят только небольшие водорастворимые молекулы (мочевина, аспирин, некоторые ионы).

Рис. 3. Фильтрация

Активный транспорт - это транспорт ЛС против градиента концентрации. Для этого вида транспорта необходимы энергетические затраты и наличие специфической системы переноса (рис. 4). Механизмы активного транспорта высокоспецифичны, они сформировались в процессе эволюции организма и необходимы для реализации его физиологических потребностей. В силу этого ЛС, проникающие через клеточные мембраны посредством активного транспорта, близки по своей химической структуре к естественным для организма веществам (например, некоторые цитостатики - аналоги пуринов и пиримидинов).

Рис. 4. Активный транспорт

Пиноцитоз . Суть его состоит в том, что переносимое вещество контактирует с определенным участком поверхности мембраны и этот участок прогибается внутрь, края углубления смыкаются, образуется пузырек с транспортируемым веществом. Он отшнуровывается от внешней поверхности мембраны и переносится внутрь клетки (напоминает фагоцитоз микробов макрофагами). Лекарственные вещества, молекулярная масса которых превышает 1000, могут войти в клетку только с помощью пиноцитоза. Таким образом переносятся жирные кислоты, фрагменты белков, витамин В 12 . Пиноцитоз играет незначительную роль во всасывании лекарств (рис. 5).

Рис. 5. Пиноцитоз

Перечисленные механизмы «работают», как правило, параллельно, но преобладающий вклад вносит обычно один из них. Какой именно - зависит от места введения и физико-химических свойств ЛС. Так, в ротовой полости и желудке, главным образом, реализуются пассивная диффузия, в меньшей степени - фильтрация. Другие механизмы практически не задействованы. В тонком кишечнике нет препятствий к реализации всех вышеуказанных механизмов всасывания. В толстом кишечнике и прямой кишке преобладают процессы пассивной диффузии и фильтрации. Они же являются основными механизмами всасывания ЛС через кожу.

Вариант 2. (неточно)

Ингаляционным путем вводят следующие лекарственные формы:

    аэрозоли (β-адреномиметики);

    газообразные вещества (летучие анестезирующие средства);

    мелкодисперсные порошки (натрия кромогликат).

Данный способ введения обеспечивает как местное (адреномиметики), так и системное (средства для наркоза) действие. Ингаляции лекарств производят с помощью специальной аппаратуры (от простейших спрей-баллончиков для самостоятельного применения больным до стационарных аппаратов). Учитывая тесный контакт вдыхаемого воздуха с кровью, а также огромную альвеолярную поверхность, скорость резорбции лекарств очень высока. Ингаляторно не применяют лекарственные средства, обладающие раздражающими свойствами. Нужно помнить, что при ингаляциях вещества сразу поступают в левые отделы сердца через легочные вены, что создает условия для проявления кардиотоксического эффекта.

Преимущества способа:

    быстрое развитие эффекта;

    возможность точного дозирования;

    отсутствие пресистемной элиминации.

Недостатки способа:

    необходимость использования сложных технических устройств (наркозные аппараты);

    пожароопасность (кислород).

Механизмы всасывания (механизмы транспорта лекарственных веществ) представлены на рис. 2.3.

Самый частый механизм транспорта лекарственных веществ – пассивная диффузия через мембраны клеток кишечной стенки (энтероцитов). Скорость всасывания в этом случае пропорциональна градиенту концентрации веществ и существенно зависит от их растворимости в мембране (наиболее легко путем пассивной диффузии всасываются липофильные неполярные вещества ).

Рис. 2.3.

А – диффузия; В – фильтрация; С – активный транспорт; D – пиноцитоз

Диффузии, как правило, подвергаются электролиты, находящиеся в недиссоциированном состоянии. Растворимость и степень ионизации лекарственного средства определяются pH содержимого желудка и кишечника. Необходимо подчеркнуть, что лекарственные средства путем пассивной диффузии хорошо всасываются и в прямой кишке, что служит основой для введения лекарственных средств ректальным путем. Виды пассивного транспорта представлены на рис. 2.4.

Рис. 2.4.

Вода, электролиты и малые гидрофильные молекулы (например, мочевина) транспортируются в кровь другим механизмом – фильтрацией через поры в эпителии кишечника. Фильтрация через поры имеет значение для всасывания лекарственных средств с молекулярной массой менее 100 Да и осуществляется по градиенту концентрации.

Использует специализированные механизмы клеточных мембран с затратой энергии для переноса определенных ионов или молекул против градиента концентрации. Он характеризуется избирательностью, насыщаемостью. При активном транспорте наблюдается конкуренция веществ за общий транспортный механизм (например, при усвоении некоторых витаминов и минеральных веществ). Степень всасывания зависит от дозы препарата, так как возможен феномен "насыщения белков-переносчиков". Особенности активного транспорта представлены на рис. 2.5.

Основной механизм всасывания ксенобиотиков (синтезированных лекарственных веществ) – пассивная диффузия. Для веществ природного происхождения, таких как аминокислоты, витамины, эссенциальные микроэлементы и др., в организме имеются специализированные активные транспортные механизмы. В этом случае основной путь усвоения – активный транспорт, а пассивная диффузия начинает играть роль только при очень высоких концентрациях.

Лекарственные вещества с большими молекулами или комплексы лекарственного вещества с крупной транспортной молекулой всасываются путем пиноцитоза . При этом происходит инвагинация мембраны клетки кишечного эпителия и образование пузырька (вакуоли), заполненного захваченной жидкостью вместе с лекарством. Вакуоль мигрирует по цитоплазме клетки к противоположной стороне и освобождает содержимое во внутреннюю среду организма. Однако пиноцитоз не имеет существенного значения для всасывания лекарственных средств и используется лишь

в редких случаях (например, при усвоении комплекса цианокобаламина с белком – внутренним фактором Кастла).

Рис. 2.5.

Современные технологии управляемого высвобождения в производстве лекарственных средств используют такие технологические приемы, как:

  • использование вспомогательных веществ;
  • гранулирование;
  • микрокапсулирование;
  • применение специального прессования;
  • покрытие оболочками и т.д.

С их помощью можно изменять время распада таблетки, скорость растворения или выделения лекарственного вещества, место выделения и длительность нахождения в определенной зоне желудочно-кишечного тракта (над окном всасывания). А это, в свою очередь, определяет скорость и полноту всасывания, динамику концентрации лекарственного вещества в крови, т.е. биодоступность препарата. Для некоторых препаратов создают таблетки из микрочастиц с адгезивными свойствами, которые "приклеиваются" к слизистой оболочке, или таблетки, разбухающие в желудке настолько, что они плавают на поверхности и (или) не могут пройти через пилорический сфинктер в кишечник. На скорость распада таблеток в желудке влияет способ их производства. Так, обычные (прессованные) таблетки прочнее тритурационных (формованных). Скорость распада зависит и от вспомогательных веществ, используемых для придания необходимых свойств таблетируемой смеси (сыпучесть, пластичность, прессуемость, содержание влаги и т.д.).

Кишечнорастворимые таблетки получают путем покрытия их желудочно-резистентной оболочкой или прессованием гранул или микрокапсул, предварительно покрытых такими оболочками. При необходимости оболочки могут обеспечивать и более длительную задержку растворения, чем на 1 ч, который таблетка проводит в желудке. Оболочка может быть достаточно толстой, например сахарной, которая иногда имеет бо́льшую массу, чем ядро таблетки, содержащее лекарственное вещество. Тонкие пленочные оболочки (менее 10% от массы таблетки) могут выполняться из целлюлозы, полиэтиленгликолей, желатина, гуммиарабика и т.д. Подбором оболочки и введением дополнительных веществ можно достичь замедления нарастания концентрации активного вещества в крови, что важно для снижения риска развития нежелательной реакции, и (или) сдвинуть время достижения максимума на несколько часов, если требуется продлить действие препарата и тем самым сократить кратность приема в целях повышения комплаентности. Таблетки пролонгированного действия (ретард), например, обычно получают прессованием микрогранул лекарственного вещества в биополимерной оболочке или распределением в биополимер- ной матрице. При постепенном (послойном) растворении основы или оболочки высвобождаются очередные порции лекарственного вещества. Современные высокотехнологичные способы доставки позволяют достичь постепенного равномерного высвобождения лекарственного вещества, например за счет создания осмотического давления внутри капсулы с действующим веществом. На этом принципе созданы новые лекарственные формы известных препаратов нифедипина (Коринфар Уно), индапамида (Индапамид ретард-Тева), пирибедила (Проноран®) тамсулозина (Омник Окас), глипизида (Глибенез ретард), тразодона (Триттико). Управляемое (контролируемое) высвобождение может достигаться использованием в таблетках микрокапсул с лекарственным веществом, покрытых специальным полимером. После растворения внешнего слоя внутрь капсулы начинает поступать жидкость и но мере растворения ядра происходят постепенное высвобождение и диффузия лекарственного вещества через мембрану капсулы. Основным фактором, ограничивающим производство и использование подобных лекарственных форм, остается условие необходимости высвобождения всего действующего начала за время прохождения таблеткой основных мест всасывания лекарственных средств в желудочно- кишечном тракте – 4–5 ч.

В последние годы для доставки лекарств применяют системы наночастиц. Наночастицы липидов (липосомы) имеют очевидные преимущества в связи с высокой степенью биосовместимости и универсальностью. Эти системы позволяют создавать фармацевтические препараты для местного, орального, ингаляционного или парентерального пути введения. Проверенная безопасность и эффективность лекарств на основе липосом сделали их привлекательными кандидатами для фармацевтических препаратов, а также вакцин, диагностических средств и нутрицевтики. Липосома в клетке показана на рис. 2.6. Липосомы похожи на пузырьки, которые состоят из многих, нескольких или только одного фосфолипидного бислоя. Полярный характер ядра позволяет улучшить доставку полярных молекул лекарственных веществ, которые необходимо инкапсулировать. Лекарство, инкапсулированное в липосому, представлено на рис. 2.7. Амфифильные и липофильные молекулы растворяются в фосфолипидном бислое в соответствии с их сродством к фосфолипидам. Формирование двухслойных ниосом возможно при участии неионных ПАВ вместо фосфолипидов.

Рис. 2.6.

Рис. 2.7.

Особые технологические проблемы ставят перед разработчиками комбинированные препараты, содержащие несколько активных веществ, требующих для оптимального всасывания различных условий. Разумеется, если требования к месту и времени усвоения для компонентов одинаковы, можно просто таблетировать смесь или при необходимости (например, для ограничения контакта между компонентами при хранении) предварительно гранулировать и капсулировать компоненты. Если компонентам требуются различные отделы ЖКТ для оптимального всасывания, то таблетки прессуют из гранул с разными скоростями растворения. В этом случае возможно также использование технологий многослойного таблетирования или контролируемого высвобождения. Обычно в состав комбинированного лекарственного средства не включают компоненты, отрицательно влияющие на сохранность, усвоение или фармакологическое действие друг друга.

Если компоненты комплексного препарата должны усваиваться в разное время (но в одном месте желудочно-кишечного тракта), то альтернативы раздельному приему нет.

Сублингвальное введение используют для нитроглицерина, потому что препарат немедленно поступает в общий кровоток, минуя кишечную стенку и печень. Однако большинство лекарств нельзя принимать таким способом, потому что они менее активны или обладают раздражающим действием.

Ректальное введение используют в тех случаях, когда больной не может принимать лекарство внутрь из-за тошноты, неспособности глотать или если ему нельзя есть (например, после операции). В ректальной свече ЛС смешано с легкоплавким веществом, которое растворяется после введения в прямую кишку. Тонкая слизистая оболочка прямой кишки хорошо снабжается кровью, поэтому препарат всасывается быстро, минуя печень при первом прохождении.

Инъекционный путь (парентеральное введение ) включает подкожный, внутримышечный и внутривенный способы введения лекарств. В противоположность пероральному введению лекарства, вводимые парентерально, попадают в кровеносное русло, минуя кишечную стенку и печень, поэтому такое введение сопровождается более быстрой и воспроизводимой реакцией. Парентеральное введение используют для следующих ситуаций: больной не может принимать препараты внутрь, ЛС должно попасть в организм быстро и в определенной дозе, а также оно плохо или непредсказуемо всасывается.

При подкожных инъекциях иглу вводят под кожу, и ЛС поступает в капилляры, а затем уносится кровотоком. Подкожное введение используют для многих белковых препаратов, например инсулина, который при приеме внутрь переваривается в ЖКТ. Лекарства для таких инъекций могут представлять собой суспензии или относительно нерастворимые комплексы: это необходимо, чтобы замедлить их поступление в кровь (от нескольких часов до нескольких суток и дольше) и уменьшить частоту введения.

Если надо ввести большой объем ЛС, внутримышечные инъекции предпочтительнее подкожных инъекций. Для таких инъекций используют более длинную иглу.

При внутривенных инъекциях иглу вводят непосредственно в вену. Это труднее выполнить технически по сравнению с другими способами введения, особенно у людей с тонкими, подвижными или склерозированными венами. Внутривенный путь введения однократно инъекционно или непрерывно капельно является самым лучшим способом доставить лекарство по назначению быстро и в точной дозе.

Трансдермальное введение используют для ЛС, которые можно вводить в организм с помощью пластыря, прикладываемого к коже. Такие лекарства, иногда смешанные с химическими веществами, облегчающими проникновение через кожу, попадают в кровоток без инъекции медленно и непрерывно в течение многих часов, дней и даже недель. Однако у некоторых людей на коже в месте контакта с пластырем появляется раздражение. Кроме того, при таком введении лекарство может поступать через кожу недостаточно быстро. Трансдермально вводят только препараты, назначаемые в относительно небольших суточных дозах, например нитроглицерин (от стенокардии), никотин (для отвыкания от курения) и фентанил (для облегчения боли).

Некоторые лекарства, например газы, применяемые для общего наркоза, и средства для лечения бронхиальной астмы в виде аэрозоля, можно вводить в организм ингаляционным путем (вдыханием). Они попадают в легкие и оттуда поступают в кровоток. Так принимают относительно немногие препараты.

Константа скорости абсорбции (К а) характеризует скорость поступления из места введения в кровь.

Схема фармакокинетики лекарственных средств представлена на рис. 2.8.

Рис. 2.8. Фармакокинетика лекарственных средств (схема)

Распределение, метаболизм, выведение лекарственных средств

Распределение изменяется при повышении проницаемости гематоэнцефалического барьера (менингит, энцефалит, ЧМТ, шок, прием кофеина, эуфиллина) и снижении проницаемости гематоэнцефалического барьера (преднизолон, инсулин).

Гидрофильные соединения хуже проникают через гематоэнцефалический барьер (меньше частота побочных действий на ЦНС).

Распределение изменяется при избыточном накоплении лекарства в тканях (липофильные соединения) в случаях ожирения. Объем распределения препарата (V d) характеризует степень его захвата тканями из плазмы (сыворотки) крови. V d (V d = D/C 0) условный объем жидкости, в котором нужно растворить всю попавшую в организм дозу препарата (D ), чтобы мв сыворотке крови (С0). Распределение изменяется при гипопротеинемии (гепатит, голодание, гломерулонефрит, пожилой возраст), гиперпротеинемии (болезнь Крона, ревматоидный артрит), гипербилирубинемии.

Фазы биотрансформации лекарственных средств представлены на рис. 2.9. Метаболизм липофильных препаратов изменяется при патологии печени (необходимо снижать дозу препаратов или кратность приемов), одновременном назначении нескольких лекарственных препаратов. Многие витамины, в частности витамин В6, являются кофакторами ферментов, метаболизирующих лекарственные средства. Так, продукты, богатые витамином В6, увеличивают скорость расщепления леводопы. Это снижает концентрацию допамина в крови. Уменьшается выраженность эффектов противопаркинсонических препаратов. С другой стороны, дефицит витамина В6 может снизить интенсивность метаболизма таких препаратов, как изониазид и др.

Общий клиренс препарата (С1 t) характеризует скорость очищения организма от лекарственного препарата. Выделяют почечный (Сlr) и внепочечный (Cl er) клиренсы, которые отражают выведение лекарственного вещества соответственно с мочой и другими путями (прежде всего с желчью). Общий клиренс является суммой почечного и внепочечного клиренса. Период полувыведения (T 1/2) – время, необходимое для уменьшения вдвое концентрации препарата в крови, зависит от константы скорости элиминации (T 1/2 = 0,693/K el). Константы скорости элиминации (К еl) и экскреции (К ел) характеризуют соответственно скорость исчезновения препарата из организма путем биотрансформации и выведения, скорость выведения с мочой, калом, слюной и др. Элиминация гидрофобных препаратов изменяется при патологии печени (необходимо снижать дозу препаратов или кратность приемов), сердечной недостаточности.

Элиминация препаратов изменяется при одновременном назначении лекарственных препаратов, тормозящих активность микросомальных ферментов печени (циметидин) Экскреция гидрофильных препаратов изменяется при изменениях pH мочи, снижении активной канальцевой секреции (гипоксия, инфекция, интоксикация). Реабсорбция и секреция электролитов и неэлектролитов в нефроне представлены на рис. 2.10.

ОСНОВНЫЕ МЕХАНИЗМЫ ВСАСЫВАНИЯ ЛЕКАРСТВЕННЫХ СРЕДСТВ (ЛС)

Всасывание - это процесс поступления ЛС из места введения в кровь. Всасывание лекарственного вещества зависит от пути введения его в организм, лекарственной формы, физико-химических свойств (растворимости в липидах или гидрофильности вещества), а также от интенсивности кровотока в месте введения.

ЛС, принятые перорально, подвергаются всасыванию, проходя через слизистую оболочку желудочно-кишечного тракта, что определяется их растворимостью в липидах и степенью ионизации. Различают 4 основные механизма всасывания: диффузия, фильтрация, активный транспорт, пиноцитоз.

Пассивная диффузия осуществляется через клеточную мембрану. Всасывание происходит до тех пор, пока концентрация лекарственного вещества по обе стороны биомембраны не сравняется. Подобным образом всасываются липофильные вещества (например, барбитураты, бензодиазепины, метопролол и др.), причем чем выше их липофильность, тем активнее их проникновение через клеточную мембрану. Пассивная диффузия веществ идет без затраты энергии по градиенту концентрации.

Облегченная диффузия - это транспорт лекарственных веществ через биологические мембраны с участием молекул специфических переносчиков. При этом перенос лекарства осуществляется также по градиенту концентрации, но скорость переноса при этом значительно выше. Например, таким образом всасывается цианокобаламин. В осуществлении его диффузии участвует специфический белок - гастромукопротеид (внутренний фактор Кастла), образующийся в желудке. Если продукция этого соединения нарушена, то снижается всасывание цианокобаламина и, как следствие этого, развивается пернициозная анемия.

Фильтрация осуществляется через поры клеточных мембран. Этот механизм пассивного всасывания идет без затраты энергии и осуществляется по градиенту концентрации. Характерен для гидрофильных веществ (например, атенолол, лизиноприл и др.), а также ионизированных соединений.

Активный транспорт осуществляется с участием специфических транспортных систем клеточных мембран. В отличие от пассивной диффузии и фильтрации активный транспорт процесс энергозатратный и способен осуществляться против градиента концентрации. В данном случае несколько веществ могут конкурировать за один и тот же транспортный механизм. Способы активного транспорта обладают высокой специфичностью, поскольку сформировались в процессе длительной эволюции организма для обеспечения его физиологических потребностей. Именно эти механизмы являются основными для осуществления доставки в клетки питательных веществ и выведения продуктов обмена.

Пиноцитоз (корпускулярная абсорбция или пенсорбция) представляет также разновидность всасывания с затратой энергии, осуществление которого возможно против градиента концентрации. При этом происходит захват лекарственного вещества и инвагинация клеточной мембраны с образованием вакуоли, которая направляется к противоположной стороне клетки, где происходит экзоцитоз с высвобождением лекарственного соединения.

РАСПРЕДЕЛЕНИЕ ЛС В ОРГАНИЗМЕ: БИОЛОГИЧЕСКИЕ БАРЬЕРЫ

Попадая в системный кровоток, ЛС начинает распределяться по различным органам и тканям организма. Большинство лекарств распределяются по организму неравномерно. Характер распределения определяется многими условиями: растворимостью, комплексообразованием с белками плазмы крови, интенсивностью кровотока в отдельных органах и т.д. С учетом этого наибольшие концентрации лекарственного вещества в первые минуты после абсорбции создаются в органах, имеющих наиболее активное кровоснабжение, таких как сердце, печень, почки. Медленнее препараты проникают в мышцы, кожу, жировую ткань. Однако действие лекарственных веществ на тот или иной орган или ткань определяется главным образом не его концентрацией, а чувствительностью к ним этих образований. Сродство лекарственных веществ к биологическим субстратам и определяет специфичность их действия.

Существуют определенные трудности для проникновения лекарственных соединений через гематоэнцефалический барьер (ГЭБ), что связано со спецификой строения капилляров мозга. Через ГЭБ хорошо проникают липофильные соединения, а вот гидрофильные не в состоянии его преодолеть. При некоторых заболеваниях мозга (менингит, травма и т.п.) проницаемость ГЭБ повышается, и через него могут проникать значительно большие количества ЛС.

Проникновению лекарств в мозг способствует также нарастание уровня остаточного азота крови, т.к. при этом повышается проницаемость ГЭБ и увеличивается свободная фракция лекарственного вещества, вытесненного из комплекса с белком. У новорожденных и детей грудного возраста проницаемость ГЭБ значительно выше, чем у взрослых, поэтому у них даже плохо растворимые в липидах вещества скорее и легче преодолевают «пограничный барьер» и обнаруживаются в более высоких концентрациях в тканях мозга. Еще более высокая проницаемость ГЭБ характерна для плода, поэтому концентрация некоторых ЛС в ликворе плода может достигать таких же значений, как и в материнской крови, что способно привести к патологии головного мозга ребенка.

Избирательная проницаемость характерна и для плацентарного барьера. Через него легко проходят липофильные вещества. Соединения со сложной структурой, высокомолекулярные, белковые вещества через плацентарный барьер не проникают. В то же время его проницаемость значительно изменяется по мере нарастания срока беременности.

Некоторые ЛС имеют повышенное сродство к определенным тканям организма, а поэтому в них происходит их накопление и даже фиксация на продолжительное время. Например, тетрациклины накапливаются в костной ткани и зубной эмали и остаются там в течение длительного времени. Липофильные соединения создают высокие уровни концентрации в жировой ткани и могут задерживаться в ней.

СВЯЗЫВАНИЕ ЛС С БЕЛКАМИ КРОВИ И ТКАНЕЙ

Попав в системный кровоток, ЛС присутствуют там в двух фракциях - свободной и связанной. Лекарства способны взаимодействовать и формировать комплексы с альбуминами, в меньшей степени - с кислыми альфа1-гликопротеинами, липопротеинами, гамма-глобулинами и форменными элементами крови (эритроцитами и тромбоцитами).

Связь лекарственного вещества с белками плазмы приводит к тому, что проникновение его в различные органы и ткани резко снижается, ибо через клеточные мембраны проходит лишь свободный препарат. Ксенобиотики, связанные с белком, не взаимодействуют с рецепторами, ферментами и не проникают через клеточные барьеры. Свободная и связанная фракции ЛС находятся в состоянии динамического равновесия - по мере снижения фракции свободного вещества лекарственное средство высвобождается из связи с белком, в результате чего концентрация вещества снижается.

Связывание лекарственных веществ с белками плазмы крови оказывает влияние на распределение их в организме, скорость и длительность действия. Если ЛС обладает низкой способностью комплексообразования с белками плазмы (? 50%), оно быстро распределяется в организме, достигает того органа или системы, на который должно проявить свое действие, и вызывает достаточно быстрый терапевтический эффект. Однако подобные лекарства быстро удаляются из организма, с чем связано их непродолжительное действие. Напротив, вещества, обладающие высоким сродством к белкам плазмы (? 90%), долгое время циркулируют в кровеносном русле, плохо и медленно проникают и накапливаются в тканях, а поэтому терапевтические уровни их в тканях создаются медленно и эффект развивается постепенно. Но такие вещества медленно элиминируют из организма, тем самым обеспечивая продолжительное лечебное действие. На этом, например, основано получение сульфаниламидных средств с пролонгированным эффектом.

ВЫВЕДЕНИЕ ЛС. БИОТРАНСФОРМАЦИЯ

Выведение (элиминация) ЛС - это сложный процесс удаления лекарства из организма, включающий в себя его нейтрализацию (биотрансформацию или метаболизм) и собственно экскрецию.

При характеристике элиминации различают пресистемную элиминацию и системную элиминацию. Как мы уже указывали («РА», 2006, №8), пресистемный метаболизм, или эффект первичного прохождения, - это биотрансформация лекарственного вещества при первичном прохождении печени после его всасывания. Системная элиминация - удаление ксенобиотика после его попадания в системный кровоток.

Биотрансформация (метаболизм) - комплекс физико-химических и биологических превращений ЛС, в результате которого образуются гидрофильные соединения, легче выводимые из организма и, как правило, проявляющие менее выраженное фармакологическое действие (либо полностью его лишенные). Поэтому в процессе метаболизма лекарственные вещества обычно теряют свою активность, но становятся более удобными для удаления из организма почками. Некоторые высокогидрофильные ионизированные соединения (например, хондроитин, глюкозамин и др.) могут не подвергаться в организме биотрансформации и выводиться в неизмененном виде.

В то же время имеется небольшое количество препаратов, биотрансформация которых приводит к образованию более активных метаболитов, чем исходное соединение. На эффекте первичного прохождения основано действие пролекарств (например, дезлоратадина, фамцикловира, периндоприла и др.), т.е. веществ, которые превращаются в фармакологически активные ЛС только после пресистемного метаболизма. Биотрансформация лекарств может осуществляться в печени, стенке кишечника, почках и других органах.

Различают метаболические реакции лекарственных веществ двух типов - несинтетические и синтетические.

Несинтетические реакции в свою очередь бывают:

Микросомальные - катализируемые ферментами эндоплазматического ретикулума;
- немикросомальные - катализируемые ферментами иной локализации (реакции окисления, восстановления и гидролиза).

В основе синтетических реакций лежит конъюгация лекарственных веществ с эндогенными соединениями или химическими группировками (глюкуроновая кислота, глутатион, сульфаты, глицин, метильные группы и др.). В процессе конъюгации, например, происходит метилирование гистамина и катехоламинов, ацетилирование сульфаниламидов, комплексообразование с глюкуроновой кислотой морфина, взаимодействие с глутатионом парацетамола и др. В результате синтетических метаболических реакций молекула препарата становится более полярной и легче выводится из организма.

МАГИСТРАЛЬНЫЕ ПУТИ ЭЛИМИНАЦИИ

Лекарственные вещества и их метаболиты покидают организм различными путями, основными из которых являются почки и ЖКТ (с калом). Меньшую роль играет выведение с выдыхаемым воздухом, потом, слюной, слезной жидкостью.

Почки выводят лекарственные вещества путем клубочковой фильтрации и канальцевой секреции, хотя большое значение имеет и процесс реабсорбции веществ в почечных канальцах.

При почечной недостаточности клубочковая фильтрация значительно понижается, что приводит к замедлению выведения ЛС из организма и увеличению его концентрации в крови. В связи с этим при прогрессирующей уремии дозу таких веществ во избежание развития токсических эффектов следует снижать. Выведение лекарственных средств почками зависит от рН мочи. Поэтому при щелочной реакции мочи быстрее выводятся вещества со слабокислыми свойствами, а при кислой реакции мочи - с основными.

Ряд препаратов (пенициллины, тетрациклины, дифенин и др.) в неизмененном виде или в форме метаболитов поступают в желчь, а затем в составе желчи выделяются в двенадцатиперстную кишку. Часть препарата с содержимым кишечника выводится наружу, а часть подвергается повторной абсорбции и снова поступает в кровь и печень, затем в желчь и опять в кишечник. Подобный цикл получил название энтерогепатической циркуляции.

Газообразные и летучие вещества могут выводиться легкими. Этот способ выведения характерен, например, для ингаляционных наркотизирующих веществ.

Препараты могут выделяться из организма слюнными железами (иодиды), потовыми железами (дитофал), железами желудка (хинин), слезными железами (рифамицин).

Большое значение имеет способность некоторых лекарственных средств выводиться с молоком лактирующих женщин. Обычно концентрация препарата в молоке недостаточна, чтобы оказать неблагоприятное действие на новорожденного. Но есть и такие ЛС, которые создают достаточно высокие концентрации в молоке, что может представлять опасность для ребенка. Информация относительно выведения различных лекарств с молоком весьма скудная, поэтому назначать препараты кормящим женщинам надо с особой осторожностью.

Наконец, необходимо указать, что интенсивность выведения лекарств из организма может быть описана количественными параметрами, служащими немаловажным элементом в оценке эффективности препаратов. К таким параметрам относятся:

а) период полувыведения (Т1/2) - время, необходимое для снижения концентрации лекарственного средства в плазме крови в 2 раза. Этот показатель находится в прямой зависимости от константы скорости элиминации;

б) общий клиренс лекарственного средства (Clt) - объем плазмы крови, очищаемый от лекарственного вещества за единицу времени (мл/мин.) за счет выведения почками, печенью и т.д. Общий клиренс равняется сумме почечного и печеночного клиренса;

в) почечный клиренс (Clr) - выведение лекарства с мочой;
г) внепочечный клиренс (Cler) - выведение лекарства иными путями (прежде всего с желчью).

Транспорт лекарств в организме к месту приложения их действия осуществляется жидкими тканями организма – кровью и лимфой. В крови лекарство может находиться в свободном состоянии и в состоянии, связанном с белками и форменными элементами крови. Фармакологически активным, т.е. способным проникать из крови в ткани-мишени и вызывать эффект, является свободная фракция лекарства.

Связанная фракция лекарства представляет собой неактивное депо лекарства и обеспечивает более длительное его существование в организме.

Как правило, оснóвные лекарства связываются с кислым a 1 -гликопротеинами плазмы крови, а кислые лекарства транспортируются на альбуминах. Некоторые лекарственные средства (гормональные, витаминные или медиаторные вещества) могут транспортироваться на специфических белках переносчиках (тироксин-связывающий глобулин, транстеритин, секс-глобулин и др.). Некоторые лекарства могут связываться и транспортироваться на ЛПНП или ЛПВП.

В зависимости от способности связываться с белками все лекарственные средства можно разделить на 2 класса:

· Класс I: Лекарственные средства, которые применяются в дозах меньших, чем число мест их связывания на белках. Такие лекарства в крови практически полностью (на 90-95%) связаны с белком и доля свободной их фракции невелика;

· Класс II: Лекарственные средства, которые применяют в дозах больших, чем число мест их связывания на белках. Такие лекарственные средства в крови находятся преимущественно в свободном состоянии и доля связанной их фракции не превышает 20-30%.

Если пациенту, принимающему лекарство из класса I, которое на 95% связано с белком (например, толбутамид) одновременно ввести другое лекарство, оно начнет конкурировать за места связывания и вытеснит часть первого лекарства. Даже если предположить, что доля вытесненного лекарства составит всего 10% уровень свободной фракции лекарства из класса I составит 5+10=15%, т.е. увеличится в 3 раза (!) и риск развития токсических эффектов у такого пациента будет весьма велик.

Если пациент принимает лекарство из класса II, которое на 30% связано с белком, то при вытеснении 10% за счет назначения другого лекарства, свободная фракция составит всего 70+10=80% или возрастет в 1,14 раза.

Схема 3. Связывание лекарственного средства I класса и II класса с альбумином, в том случае, когда они назначаются по отдельности и совместно. А. I класс лекарственных средств. Доза лекарства меньше, чем число доступных мест связывания. Большая часть молекул лекарства связана с альбумином и концентрация свободной фракции лекарственного средства низкая.

В. II класс лекарственных средств. Доза больше, чем число доступных мест связывания. Большинство молекул альбумина содержат связанное лекарство, но концентрация свободной его фракции все еще остается значительной.



С. Совместное назначение I и II класса лекарственных средств. При одновременном введении происходит вытеснение лекарства I класса из связи с белком и уровень его свободной фракции возрастает.

Таким образом, лекарства, которые в значительной мере связаны с белком обладают более длительным эффектом, но могут вызывать развитие токсических реакций, если на фоне их приема пациенту проводят назначение дополнительного лекарства, без коррекции дозы первого средства.

Некоторые лекарства находятся в крови в связанном с форменными элементами состоянии. Например, на эритроцитах переносится пентоксифиллин, а на лейкоцитах - аминокислоты, некоторые макролиды.

Распределением лекарственных средств называют процесс его распространения по органам и тканям после того, как он поступит в системный кровоток. Именно распределение лекарств обеспечивает его попадание к клеткам-мишеням. Распределение лекарств зависит от следующих факторов:

· Природы лекарственного вещества – чем меньше размеры молекулы и липофильнее лекарство, тем быстрее и равномернее его распределение.

· Размеров органов – чем больше размер органа, тем больше лекарственного средства может поступить в него без существенного изменения градиента концентраций. Например, объем скелетных мышц очень велик, поэтому концентрация лекарства в них остается низкой даже после того, как произошла абсорбция значительного количества лекарства. Напротив, объем головного мозга ограничен и поступление в него даже небольшого количества лекарства сопровождается резким повышением его концентрации в ткани ЦНС и исчезновению градиента.

· Кровоток в органе. В хорошо перфузируемых тканях (мозг, сердце, почки) терапевтическая концентрация вещества создается значительно раньше, чем в тканях плохо перфузируемых (жировая, костная). Если лекарственное средство быстро подвергается разрушению, то в плохо перфузируемых тканях его концентрация может так и не повысится.

· Наличие гистогематических барьеров (ГГБ). ГГБ называют совокупность биологических мембран между стенкой капилляра и тканью, которую он кровоснабжает. Если ткань имеет плохо выраженный ГГБ, то лекарство легко проникает через него. Такая ситауция имеет место в печени, селезенке, красном костном мозге, где имеются капилляры синусоидного типа (т.е. капилляры, в стенке которых имеются отверстия – фенестры). Напротив, в ткани с плотными ГГБ распределение лекарств происходит весьма плохо и возможно лишь для высоколипофильных соединений. Наиболее мощными ГГБ в организме человека являются:

[ Гемато-энцефалический барьер – барьер между кровеносными капиллярами и тканью мозга. Покрывает всю мозговую ткань за исключением гипофиза и дна IV желудочка. При воспалении проницаемость барьера резко возрастает.

[ Гемато-офтальмический барьер – барьер между капиллярами и тканями глазного яблока;

[ Гемато-тиреоидный барьер – барьер между капиллярами и фолликулами щитовидной железы;

[ Гемато-плацентарный барьер – разделяет кровообращение матери и плода. Один из самых мощных барьеров. Практически не пропускает лекарственные вещества с Mr>600 Да вне зависимости от их липофильности. Проницаемость барьера повышается с 32-35 нед беременности. Это связано с его истончением.

[ Гемато-тестикулярный барьер – барьер, который разделяет кровеносные сосуды и ткани яичек.

· Связывание лекарства с белками плазмы. Чем больше связанная фракция лекарства, тем хуже его распределение в ткани. Это связано с тем, что покидать капилляр могут лишь свободные молекулы.

· Депонирование лекарства в тканях. Связывание лекарства с белками тканей способствует его накоплению в них, т.к. снижается концентрация свободного лекарства в периваскулярном пространстве и постоянно поддерживается высокий градиент концентраций между кровью и тканями.

Количественной характеристикой распределения лекарства является кажущийся объем распределения (V d). Кажущийся объем распределения – это гипотетический объем жидкости, в котором может распределиться вся введенная доза лекарства, чтобы создалась концентрация, равная концентрации в плазме крови. Т.о. V d равен отношению введенной дозы (общего количества лекарства в организме) к его концентрации в плазме крови:

.

Рассмотрим две гипотетические ситуации (см. схему 4). Некое вещество А практически не связывается с макромолекулами (жирные извилистые линии на схеме) как в сосудистом, так и во внесосудистом компартментах гипотетического организма. Поэтому вещество А свободно диффундирует между этими двумя компартментами. При введении 20 ЕД вещества в организм состояние устойчивого равновесия возникает при концентрации в крови вещества А в 2 ЕД/л и объем распределения, соответственно, равен 10 л. Вещество В, напротив, прочно связывается с белками крови, диффузия вещества существенно ограничена. При установлении равновесия, только 2 ЕД от общего количества вещества В диффундируют в экстраваскулярный объем, а остальные 18 ЕД остаются в крови и объем распределения составляет 1,1 л. В каждом случае общее количество лекарства в организме одинаковое (20 ЕД), но рассчитанные объемы распределения, как это легко видеть, очень различны.

Схема 4. Влияние связывания веществ тканями на объем их распределения. Пояснения в тексте.

Таким образом, чем больше кажущийся объем распределения, тем большая часть лекарств распределяется в ткани. У человека массой 70 кг объемы жидких сред составляют в целом 42 л (см. схему 5). Тогда, если:

[ V d =3-4 л, то все лекарство распределено в крови;

[ V d <14 л, то все лекарство распределено во внеклеточной жидкости;

[ V d =14-48 л, то все лекарство приблизительно равномерно распределено в организме;

[ V d >48 л, то все лекарство находится преимущественно во внеклеточном пространстве.

Схема 5. Относительная величина различных объемов жидких сред организма, где происходит распределение лекарственных средств у человека массой 70 кг.

Кажущийся объем распределения часто применяют при планировании режима дозирования для расчета нагрузочных доз (D н ) и их коррекции. Нагрузочной называют дозу лекарства, которая позволяет полностью насытить организм лекарственным средством и обеспечить в крови его терапевтическую концентрацию:

ЭЛИМИНАЦИЯ ЛЕКАРСТВ

Элиминацией лекарств (лат. elimino – выносить за порог) – называют совокупность процессов метаболизма и выведения, которые способствуют удалению активной формы лекарства из организма и снижению его концентрации в плазме крови. Элиминация включает в себя 2 процесса: биотрансформацию (метаболизм) и экскрецию лекарств. Основными органами элиминации являются печень и почки. В печени элиминация протекает путем биотрансформации, а в почках – путем экскреции.