Медицина ХХI века: стволовые клетки, наноалмазы и тканевая инженерия. Тканевая инженерия: реальные перспективы Где применяются графты

После того, как была определена пригодность разлагаемого полимера для применения в костной тканевой хирургии, он должен был быть сформирован в пористый каркасный материал. Здесь необходимы два главных этапа. Во-первых, нужно разработать способ превращения полимера в объемный материал. Во-вторых, требуется способ сделать этот материал пористым.

Изготовление материала для тканевой инженерии

Правильный способ изготовления материала, или структурирования, частично зависит от химической природы полимера. Длинные, линейные, сатурированные полимеры, такие как PLGA, обыкновенно формируются в объемный материал переплетением отдельных полимерных цепей, чтобы образовать свободносвязанную полимерную сетку. Переплетение полимерной цепи часто достигается с помощью отливки полимера в форме. Таким образом, полимер расплавляется в растворителе, потом раствор заливается в форму или оболочку, впоследствии растворитель испаряется, оставляя полимер в виде объемного материала в форме оболочки. В качестве альтернативы, вливание полимера может осуществляться с помощью нагревания, давления или и того, и другого. Так, полимер помещается в форму, нагревается до своей температуры стеклования и с применением давления принимает форму оболочки. Преимущество этих способов в том, что они относительно просты. Однако, так как материал является упругим телом только из-за переплетенных полимерных цепей, в целом материалу недостает механической прочности. Этот недостаток трудно преодолеть без изменения химического строения полимера.

Еще один способ сформировать объемный материал из линейного полимера включает образование химических связей между полимерными цепями, известное как полимерное связывание. Связывание наиболее часто производится между ненасыщенными углерод-углеродными двойными связями, следовательно, эта составляющая, или другая, дающая аналогичную реакцию, должна существовать где-нибудь в полимерной цепи. Система инициации, обычно радикальная или ионная, также необходима для обеспечения связывания. Система инициации соединяется с полимером и, в ответ на импульс, такой как тепло, свет, химический ускоритель или просто время, инициатор образует продукт, распространяющий связывание. Так как эти полимеры сформированы в объемный материал с помощью ковалентного связывания, они обычно обладают значительной механической прочностью. Более того, их способность к затвердеванию в ответ на приложенный импульс позволяет вводить эти материалы в поврежденный участок, чтобы они затвердевали на месте. Важнейший недостаток связываемых материалов в том, что растущая сложность материала в условиях множества компонентов и наличия химической реакции часто ведет к проблемам с цитотоксичностью и биосовместимостью.

Также следует заметить, что отправная точка материала может не являться полимером, а может быть меньшей молекулой, такой как олигомер или мономер. С этими меньшими молекулами материал может формироваться с помощью инициации их полимеризации. Полимеризованные мономеры могут впоследствии сформировать объемный материал посредством переплетения длинных полимерных цепей в случае с бифункциональным мономером, или разветвления сеток в случае с мультифункциональными мономерами. Преимущества и недостатки, связанные с полимеризацией мономера, такие же, как с полимерным связыванием.

Методы, описанные выше, могут применяться как к гидрофобным, так и к гидрофильным полимерам. Основное преимущество гидрофобных полимеров, таких как PLA, над гидрофильными полимерами, такими как PEG, состоит в сравнительной прочности образуемого геля. Однако, гидрофобные полимеры в целом не могут использоваться для клеточной инкапсуляции, так как гель препятствует транспортировке воды, питательных веществ и отходов к клетке и из нее. Гели, образованные из гидрофобных полимеров, обычно используются в качестве каркаса, в котором клетки и ткани присоединяются к поверхности материала более чем внутри материала. Для применения в клеточной инкапсуляции особенно полезными являются гидрофильные полимеры (39, 46-51, 59-61). Эти полимеры образуют гель, который часто содержит до 90 % воды, что допускает значительную пассивную диффузию молекул в клетку и из нее. Высокое содержание воды, к сожалению, часто влечет за собой ухудшение механических свойств геля. В костной тканевой инженерии гидрогели могут использоваться в среде, не несущей нагрузок или в качестве компонента внутри каркаса, обладающего достаточно высокими механическими качествами. Выбор между гидрофильным и гидрофобным полимерами зависит, в основном, от рассматриваемой стратегии тканевой инженерии, а также от самих тканей.

Биомиметические материалы

Последние исследования сосредоточены на биомиметических материалах. Биомиметические материалы, созданные, чтобы более точно воспроизводить структуру внеклеточного матрикса, обычно являются гидрогелями, призванными особым образом взаимодействовать с определенным видом клеток таким образом, чтобы создать искусственную ткань, обладающую необходимыми свойствами. В целом, эти материалы впервые были получены путем создания материала, практически полностью предотвращающего клеточную адгезию. Далее, сигнальные молекулы, чаще всего короткие пептидные последовательности, полученные адгезией белков и участвующие в специфичной клеточной адгезии, ковалентно связываются с материалом. В результате получается материал, допускающий прикрепляться к его поверхности или проникать в его поры только особый вид клеток.

Очень важный фактор, который часто упускается из вида, это то, что первоначальный материал должен предотвращать случайную клеточную адгезию, чтобы окончательный материал обладал специфичной адгезией. Это часто достигается путем использования гидрогеля в качестве основного материала, так как считается, что гидрофильность гидрогелей предотвращает адсорбцию гидрофобных белков, необходимую для клеточной адгезии. Дополнительные факторы, определяющие успех этой стратегии, – объединение пептидной последовательности в наполнителе, более чем на поверхности материала, ограниченное расстояние, предоставленное пептидной последовательности, таким образом, становится возможно привязать ее к рецепторам поверхности клетки, и плотность пептидных последовательностей внутри материала. Наконец, дальнейшие исследования пептидных последовательностей, специфичных для адгезии отдельных клеточных популяций, необходимы для дальнейшего успеха этой методики.

Порообразование

После того, как была разработана методика превращения полимера в твердый материал, необходимо найти способ образования пористой структуры внутри материала. Самая простая методика – включение порогена в материал перед приготовлением, а после извлечь пороген. Объем, однажды заполненный порогеном, потом остается пустым, образуя поры внутри материала. Зная плотность материала и порогена, можно вычислить пористость, контролируя вес порогена относительно материала. Этот метод, известный как выщелачивание порогена, наиболее легко выполним с использованием порогена, растворимого в воде, такого как соль, сахар или крупицы желатина, который может быть извлечен замачиванием конструкции в воде. Принцип этого метода в том, что может быть собрано достаточное количество порогена, таким образом, отдельные поры соприкасаются друг с другом, образуя связанную пористую структуру внутри материала. Связанная пористость необходима не только для своевременного извлечения порогена, но и для создания каркаса для жизнеспособных тканей. Количество порогена, необходимое для соединяемости, зависит от материала и порогена, но обычно 70 % веса конструкции занимает пороген. Наконец, порогенный метод имеет то преимущество, что связанная пористость может быть достигнута простым измерением веса каркасной конструкции до и после извлечения порогена, если вес порогена, содержащегося в каркасной конструкции, равен весу, потерянному порогенным выщелачиванием, связанность достигнута.

Вторая основная методика формирования пористой структуры включает использование газа для образования пор внутри материала. Обычно газы, такие как азот или углекислый газ, вводят в состав объемного материала во время его приготовления, продувая материал газом или образуя газ как продукт химической реакции. Другой способ – образование пузырей замороженного растворителя, которые постепенно извлекаются испарением, чтобы получить пористую структуру материала. Опять же, основной принцип этого метода – объединение достаточного объема газа для формирования связанной пористой структуры.

В настоящее время разработаны более простые технологии создания каркасных структур с определенным строением. К настоящему моменту эти методы чаще всего используются для образования пористых каркасов, таких как описанный выше, для получения каркаса случайного строения. Это случайное пористое строение имеет два недостатка. Во-первых, оно сильно ухудшает механические свойства каркаса. Это ведет к необходимости создания материалов с очень высокими механическими качествами, чтобы полученный каркас мог использоваться в костной тканевой инженерии, а это ограничивает выбор применяемых материалов. Во-вторых, не менее важно то, что случайная пористость мешает серьезным исследованиям влияния каркасной структуры на образование тканей – проблема очень серьезная для костной тканевой инженерии. Ведущие методы создания каркасов с заданным строением включают в себя техники быстрого изготовления моделей, такие как трехмерное отпечатывание и стереолитография.

J.P. Fisher and A.H. Reddi, Functional Tissue Engineering of Bone: Signals and Scaffolds
Перевод Борисовой Марины

В последнее время во всем мире наблюдается тревожная закономерность, которая заключающееся в росте количества заболеваний и инвалидизации людей трудоспособного возраста, что настоятельно требует освоения и внедрения в клиническую практику новых, более эффективных и доступных методов восстановительного лечения больных.

Одним из таких методов наряду с имплантацией и трансплантацией является тканевая инженерия. Клеточная и тканевая инженерия - является последним достижением в области молекулярной и клеточной биологии. Этот подход открыл широкие перспективы для создания эффективных биомедицинских технологий, с помощью которых становится возможным восстановление поврежденных тканей и органов и лечение ряда тяжелых метаболических заболеваний человека.

Цель тканевой инженерии - конструирование и выращивание вне организма человека живых, функциональных тканей или органов для последующей трансплантации пациенту с целью замены или стимуляции регенерации поврежденных органа или ткани. Иными словами, на месте дефекта должна быть восстановлена трехмерная структура ткани.

Обычные имплантаты из инертных материалов могут устранить только физические и механические недостатки поврежденных тканей, - в отличие от тканей, полученных методом инженерии, которые восстанавливают, в том числе, и биологические (метаболические) функции. То есть, происходит регенерация ткани, а не простое замещение ее синтетическим материалом.

Однако для развития и совершенствования методов реконструктивной медицины на базе тканевой инженерии необходимо освоение новых высокофункциональных материалов. Эти материалы, применяемые для создания биоимплантатов, должны придавать тканеинженерным конструкциям характеристики, присущие живым тканям. Среди этих характеристик:

  • 1) способность к самовосстановлению;
  • 2) способность поддерживать кровоснабжение;
  • 3) способность изменять строение и свойства в ответ на факторы окружающей среды, включая механическую нагрузку.

Наиболее важным элементом успеха является наличие необходимого количества функционально активных клеток, способных дифференцироваться, поддерживать соответствующий фенотип и выполнять конкретные биологические функции. Источником клеток могут быть ткани организма и внутренние органы. Возможно использование соответствующих клеток от пациента, нуждающегося в реконструктивной терапии, или от близкого родственника (аутогенных клеток). Могут быть использованы клетки различного происхождения, в том числе первичные и стволовые клетки. Первичные клетки - это зрелые клетки определенной ткани, которые могут быть взяты непосредственно от организма-донора (ex vivo) хирургическим путем. Если первичные клетки взяты у определенного организма-донора, и впоследствии необходимо имплантировать эти клетки ему же в качестве реципиента, то вероятность отторжения имплантированной ткани исключается, поскольку присутствует максимально возможная иммунологическая совместимость первичных клеток и реципиента. Однако первичные клетки, как правило, не способны делиться - их потенциал к размножению и росту низок. При культивировании таких клеток in vitro (посредством тканевой инженерии) для некоторых типов клеток возможна дедифференцировка, то есть потеря специфических, индивидуальных свойств. Так, например, хондроциты, вводимые в культуру вне организма, часто продуцируют фиброзный, а не прозрачный хрящ.

Поскольку первичные клетки не способны делиться и могут потерять свои специфичные свойства, возникла необходимость альтернативных источников клеток для развития технологий клеточной инженерии. Таковой альтернативой стали стволовые клетки.

Стволовые клетки - недифференцированные клетки, которые имеют способность к делению, самообновлению и дифференцировке в различные типы специализированных клеток под воздействием конкретных биологических стимулов.

Стволовые клетки подразделяются на "взрослые" и "эмбриональные". Эмбриональные стволовые клетки образуются из внутренней клеточной массы развития зародыша на ранней стадии, а взрослые - из тканей взрослого организма, пуповины или даже плодных тканей. Однако существует этическая проблема, связанная с неизбежным разрушением человеческого эмбриона при получении эмбриональных стволовых клеток. Поэтому предпочтительнее "добыча" клеток из тканей взрослого организма. Так, например, в 2007 году Шинью Яманакой (Shinya Yamanaka) из Киотского университета Японии были открыты индуцированные плюрипотентные стволовые клетки (ИПСК), получаемые из покровных тканей человека (в основном, из кожи). ИПСК открывают поистине невиданные возможности для регенеративной медицины, хотя, прежде чем они всерьез войдут в медицинскую практику, предстоит решить еще немало проблем.

Для направления организации, поддержания роста и дифференцировки клеток в процессе реконструкции поврежденной ткани необходим специальный носитель клеток - матрикс, представляющий из себя трехмерную сеть, похожую на губку или пемзу. Для их создания применяют биологически инертные синтетические материалы, материалы на основе природных полимеров (хитозан, альгинат, коллаген) и биокомпозиты. Так, например, эквиваленты костной ткани получают путем направленной дифференцировки стволовых клеток костного мозга, пуповинной крови или жировой ткани в остеобласты, которые затем наносят на различные материалы, поддерживающие их деление (например, донорскую кость, коллагеновые матрицы и др.).

На сегодняшний день одна из стратегий тканевой инженерии такова:

  • 1) отбор и культивирование собственных или донорских стволовых клеток;
  • 2) разработка специального носителя для клеток (матрицы) на основе биосовместимых материалов;
  • 3) нанесение культуры клеток на матрицу и размножение клеток в биореакторе со специальными условиями культивирования;
  • 4) непосредственное внедрение тканеинженерной конструкции в область пораженного органа или предварительное размещение в области, хорошо снабжаемой кровью, для дозревания и формирования микроциркуляции внутри конструкции (префабрикация).

Матриксы через некоторое время после имплантации в организм хозяина полностью исчезают (в зависимости от скорости роста ткани), а в месте дефекта останется только новая ткань. Также возможно внедрение матрикса с уже частично сформированной новой тканью ("биокомпозит"). Безусловно, после имплантации тканеинженерная конструкция должна сохранить свои структуру и функции в течение периода времени, достаточного для восстановления нормально функционирующей ткани в месте дефекта, и интегрироваться с окружающими тканями. Но, к сожалению, идеальные матриксы, удовлетворяющие всем необходимым условиям, пока не созданы.

Перспективные тканеинженерные технологии открыли возможность лабораторного создания живых тканей и органов, но перед созданием сложных органов наука пока бессильна. Однако сравнительно недавно ученые под руководством доктора Гунтера Товара (Gunter Tovar) из Общества Фраунгофера в Германии сделали огромнейший прорыв в сфере тканевой инженерии - они разработали технологию создания кровеносных сосудов. А ведь казалось, что капиллярные структуры создать искусственно невозможно, поскольку они должны быть гибкими, эластичными, малой формы и при этом взаимодействовать с естественными тканями. Как ни странно, но на помощь пришли производственные технологии - метод быстрого прототипирования (другими словами, 3D-печать). Подразумевается, что сложная трехмерная модель (в нашем случае кровеносный сосуд) печатается на трехмерном струйном принтере с использованием специальных "чернил".

Принтер наносит материал послойно, и в определенных местах слои соединяются химически. Однако заметим, что для мельчайших капилляров трехмерные принтеры пока недостаточно точны. В связи с этим был применен метод многофотонной полимеризации, используемый в полимерной промышленности. Короткие интенсивные лазерные импульсы, обрабатывающие материал, так сильно возбуждают молекулы, что они взаимодействуют друг с другом, соединяясь в длинные цепочки. Таким образом, материал полимеризуется и становится твердым, но эластичным, как естественные материалы. Эти реакции настолько управляемы, что с их помощью можно создавать мельчайшие структуры по трехмерному "чертежу".

А для того, чтобы созданные кровеносные сосуды могли состыковаться с клетками организма, при изготовлении сосудов в них интегрируют модифицированные биологические структуры (например, гепарин) и "якорные" белки. На следующем этапе в системе созданных "трубочек" закрепляются клетки эндотелия (однослойный пласт плоских клеток, выстилающий внутреннюю поверхность кровеносных сосудов) - для того, чтобы компоненты крови не приклеивались к стенкам сосудистой системы, а свободно транспортировались по ней.

Однако прежде чем действительно можно будет имплантировать выращенные в лаборатории органы с собственными кровеносными сосудами, пройдет еще какое-то время.

Осенью 2008 года руководитель клиники Университета Барселоны (Испания) и Медицинской школы Ганновера (Германия) профессор Паоло Маккиарини (Paolo Macchiarini) провел первую успешную операцию по трансплантации биоинженерного эквивалента трахеи пациентке со стенозом главного левого бронха на протяжении 3 см.

В качестве матрикса будущего трансплантата был взят сегмент трупной трахеи длиной 7 см. Чтобы получить природную матрицу, по свойствам превосходящую все то, что можно сделать из полимерных трубок, трахею очистили от окружающей соединительной ткани, клеток донора и антигенов гистосовместимости. Очищение заключалось в 25 циклах девитализации с применением 4% -деоксихолата натрия и дезоксирибонуклеазы I (процесс занял 6 недель). После каждого цикла девитализации проводили гистологическое исследование ткани для выявления количества оставшихся ядросодержащих клеток, а также иммуногистохимическое исследование на наличие в ткани антигенов гистосовместимости HLA-ABC, HLA-DR, HLA-DP и HLA-DQ. Благодаря биореактору собственной разработки ученые на поверхность медленно вращающегося отрезка трахеи равномерно нанесли шприцем суспензию клеток. Затем трансплантат, наполовину погруженный в среду для культивирования, вращался вокруг своей оси с целью попеременного контакта клеток со средой и воздухом.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Макеевская общеобразовательная школа I - III ступеней №72

на тему: Тканевая инженерия в медицине

Выполнил:

Шуджаулла Камил

Введение

1.1 Первичные клетки

1.2 Стволовые клетки

3.2 3D-биопринтинг

4. Выращивание тканей

4.7 Костный мозг

5. Выращивание органов

5.1 Мочевой пузырь

5.2 Трахея

5.4 Печень

5.5 Сердце

5.6 Легкие

Заключение

Приложение

Введение

Одним из направлений биотехнологии, которое занимается созданием биологических заместителей тканей и органов, является тканевая инженерия (ТИ).

Тканевая инженерия (англ. tissue engineering) -- создание новых тканей и органов для терапевтической реконструкции поврежденного органа посредством доставки в нужную область опорных структур, клеток, молекулярных и механических сигналов для регенерации.

В настоящее время тканевая инженерия начинает применяться в клинической практике для лечения дегенеративных заболеваний и пороков развития; при ожогах и травмах, при позднем гидро- и уретерогидронефрозе, а также при стоматологических и косметологических операциях.

Современные разработки биомедицины, и в частности тканевой инженерии; могут быть использованы с целью повышения результативности лечения при восстановлении утраченных функционально значимых тканей.

1. Клетки для тканевой инженерии

Наиболее важным элементом успеха является наличие необходимого количества функционально активных клеток, способных дифференцироваться, поддерживать соответствующий фенотип и выполнять конкретные биологические функции. Источником клеток могут быть ткани организма и внутренние органы. Возможно использование соответствующих клеток от пациента, нуждающегося в реконструктивной терапии, или от близкого родственника (аутогенных клеток). Могут быть использованы клетки различного происхождения, в том числе первичные и стволовые клетки.

1.1 Первичные клетки

Первичные клетки -- это зрелые клетки определенной ткани, которые могут быть взяты непосредственно от организма-донора (ex vivo) хирургическим путем. Если первичные клетки взяты у определенного организма-донора, и впоследствии необходимо имплантировать эти клетки ему же в качестве реципиента, то вероятность отторжения имплантированной ткани исключается, поскольку присутствует максимально возможная иммунологическая совместимость первичных клеток и реципиента. Однако первичные клетки, как правило, не способны делиться -- их потенциал к размножению и росту низок.

При культивировании таких клеток in vitro (посредством тканевой инженерии) для некоторых типов клеток возможна дедифференцировка, то есть потеря специфических, индивидуальных свойств. Так, например, хондроциты, вводимые в культуру вне организма, часто продуцируют фиброзный, а не прозрачный хрящ.

Поскольку первичные клетки не способны делиться, и могут потерять свои специфичные свойства, возникла необходимость альтернативных источников клеток для развития технологий клеточной инженерии. Таковой альтернативой стали стволовые клетки.

1.2 Стволовые клетки

Стволовые клетки -- недифференцированные клетки, которые имеют способность к делению, самообновлению и дифференцировке в различные типы специализированных клеток под воздействием конкретных биологических стимулов.

Стволовые клетки подразделяются на «взрослые» и «эмбриональные»

Источником "взрослых" стволовых клеток является пуповинная кровь, собранная после рождения ребенка. Эта кровь очень богата стволовыми клетками. Взяв эту кровь из пуповины ребенка, и поместив в криобанк (специальное хранилище), стволовые клетки в дальнейшем можно использовать для восстановления практически любой ткани и органа этого индивидуума. Возможно также, использовать эти стволовые клетки для лечения других пациентов при условии их совместимости по антигенам. Американские ученые получили стволовые клетки из человеческой плаценты (там, их количество в 10 раз больше, чем в пуповинной крови), которые способны преобразовываться в кожные, кровяные, мышечные и нервные клетки.

Источником другого вида стволовых клеток -- фетальных (эмбриональных) стволовых клеток, является абортивный материал 9--12 недели беременности. Этот источник на сегодняшний день используется наиболее часто. Но, помимо этических и юридических трений, фетальные клетки иногда могут вызвать отторжение трансплантата. Кроме того, использование непроверенного абортивного материала чревато заражением пациента вирусным гепатитом, СПИДом, цитомегаловирусом и т. д.

Для направления организации, поддержания роста и дифференцировки клеток в процессе реконструкции поврежденной ткани необходим специальный носитель клеток -- матрикс, представляющий из себя трехмерную сеть, похожую на губку или пемзу (доп.рис. 3). Для их создания применяют биологически инертные синтетические материалы, материалы на основе природных полимеров (хитозан, альгинат, коллаген) и биокомпозиты. Так, например, эквиваленты костной ткани получают путем направленной дифференцировки стволовых клеток костного мозга, пуповинной крови или жировой ткани в остеобласты, которые затем наносят на различные материалы, поддерживающие их деление (например, донорскую кость, коллагеновые матрицы и др.).

2. Этапы создания искусственных органов

На сегодняшний день одна из стратегий тканевой инженерии такова:

1. Отбор и культивирование собственного или донорского клеточного материала.

Клеточный материал может быть представлен клетками регенерируемой ткани или стволовыми клетками.

На первом этапе отбирают собственный или донорский клеточный материал (биопсия), выделяют тканеспецифичные клетки и культивируют их. В состав тканеинженерной конструкции, или графта, кроме культуры клеток входит специальный носитель (матрица)

2. Разработка специального носителя для клеток (матрицы) на основе биосовместимых материалов

Матрицы могут быть выполнены из различных биосовместимых материалов. Для создания матриц графтов применяют биологически инертные синтетические материалы, материалы на основе природных полимеров (хитозан, альгинат, коллаген), а также биокомпозитные материалы. Например, эквиваленты костной ткани получают путем направленного дифференцирования стволовых клеток костного мозга, пуповинной крови или жировой ткани. Клетки полученной культуры наносятся на матрицу. инженерия ткань орган выращивание

3. Нанесение культуры клеток на матрицу и размножение клеток в биореакторе со специальными условиями культивирования

Где культура инкубируется в течение определенного времени. Первые биореакторы были созданы для получения искусственной печеночной ткани.

4. Непосредственное внедрение графта в область пораженного органа или предварительное размещение в области, хорошо снабжаемой кровью, для дозревания и формирования микроциркуляции внутри графта (префабрикация)

Биоматериалы, используемые для получения матриц, должны быть биологически инертными и после графтинга (перенесения в организм) обеспечивать локализацию нанесенного на них клеточного материала в определенном месте. Большинство биоматериалов тканевой инженерии легко разрушаются (резорбируются) в организме и замещаются его собственными тканями. При этом не должны образовываться промежуточные продукты, обладающие токсичностью, изменяющие рН ткани или ухудшающие рост и дифференцировку клеточной культуры. Нерезорбируемые материалы почти не применяются, т.к. они ограничивают регенерационную активность, вызывают избыточное образование соединительной ткани, провоцируют реакцию на инородное тело (инкапсуляцию)

Живые эквиваленты кожи, содержащие донорские или собственные кожные клетки, в настоящее время широко применяются в США, России, Италии. Эти конструкции позволяют улучшить заживление обширных ожоговых поверхностей. Разработка графтов ведется также в кардиологии (искусственные клапаны сердца, реконструкция крупных сосудов и капиллярных сетей); для восстановления органов дыхания (гортань, трахея и бронхи), тонкого кишечника, печени, органов мочевыделительной системы, желез внутренней секреции и нейронов. Наночастицы металлов в тканевой инженерии используются для контроля роста клеток через воздействие на них магнитными полями разной направленности. Например, таким способом удалось создать не только аналоги структур печени, но и такие сложные структуры, как элементы сетчатки глаза. Также нанокомпозитные материалы, созданные с помощью метода электронно-лучевой литографии (electron beam lithography, EBL), обеспечивают наноразмерную шероховатость поверхности матриц для эффективного формирования костных имплантантов. Создание искусственных тканей и органов позволит отказаться от трансплантации большей части донорских органов, улучшит качество жизни и выживаемость пациентов.

3. Основные методы инженерии тканей

3.1 Имитация естественного органогенеза

Органогенез - процесс формирования органов в ходе эмбрионального развития

Органогенез сопровождается дифференцировкой клеток, тканей, избирательным и неравномерным ростом отдельных органов и частей организма, продолжается в личиночном и завершается в ювенильном периоде

3.2 3D-биопринтинг

Перспективные тканеинженерные технологии открыли возможность лабораторного создания живых тканей и органов, но перед созданием сложных органов наука пока бессильна. Однако сравнительно недавно ученые под руководством доктора Гунтера Товара (Gunter Tovar) из Общества Фраунгофера в Германии сделали огромнейший прорыв в сфере тканевой инженерии -- они разработали технологию создания кровеносных сосудов. А ведь казалось, что капиллярные структуры создать искусственно невозможно, поскольку они должны быть гибкими, эластичными, малой формы и при этом взаимодействовать с естественными тканями. Как ни странно, но на помощь пришли производственные технологии -- метод быстрого прототипирования (другими словами, 3D-печать). Подразумевается, что сложная трехмерная модель (в нашем случае кровеносный сосуд) печатается на трехмерном струйном принтере с использованием специальных «чернил». Принтер наносит материал послойно, и в определенных местах слои соединяются химически. Однако заметим, что для мельчайших капилляров трехмерные принтеры пока недостаточно точны. В связи с этим был применен метод многофотонной полимеризации, используемый в полимерной промышленности. Короткие интенсивные лазерные импульсы, обрабатывающие материал, так сильно возбуждают молекулы, что они взаимодействуют друг с другом, соединяясь в длинные цепочки. Таким образом, материал полимеризуется и становится твердым, но эластичным, как естественные материалы. Эти реакции настолько управляемы, что с их помощью можно создавать мельчайшие структуры по трехмерному «чертежу».

А для того, чтобы созданные кровеносные сосуды могли состыковаться с клетками организма, при изготовлении сосудов в них интегрируют модифицированные биологические структуры (например, гепарин) и «якорные» белки. На следующем этапе в системе созданных «трубочек» закрепляются клетки эндотелия (однослойный пласт плоских клеток, выстилающий внутреннюю поверхность кровеносных сосудов) -- для того, чтобы компоненты крови не приклеивались к стенкам сосудистой системы, а свободно транспортировались по ней. Однако прежде чем действительно можно будет имплантировать выращенные в лаборатории органы с собственными кровеносными сосудами, пройдет еще какое-то время.

Выращивание органов на донорском или ксенологическом матриксе, выращивание органов на искусственном матриксе см.п.3

4. Выращивание тканей

Выращивание простых тканей - уже существующая и использующаяся в практике технология

Восстановление повреждённых участков кожи уже является частью клинической практики. В ряде случаев используются методы регенерации кожи самого человека, например, пострадавшего от ожога посредством специальных воздействий. Это например разработанный Р.Р. Рахматуллиным биопластический материал гиаматрикс, или биокол, разработанный коллективом под руководством Б.К. Гаврилюка. Для выращивания кожи на месте ожога также используются специальные гидрогели.

Также развиваются методы распечатки фрагментов ткани кожи с помощью специальных принтеров. Созданием таких технологий занимаются, например, разработчики из американских центров регенерационной медицины AFIRM и WFIRM.

Доктор Герлах (Jorg Gerlach) с коллегами из Института регенеративной медицины при Университете Питсбурга (Institute for Regenerative Medicine at the University of Pittsburg) изобрели устройство для пересадки кожи, которое поможет людям быстрее излечиться от ожогов различной степени тяжести. Skin Gun распыляет на поврежденную кожу пострадавшего раствор с его же стволовыми клетками. На данный момент новый метод лечения находится на экспериментальной стадии, но результаты уже впечатляют: тяжелые ожоги заживают буквально за пару дней.

Группа сотрудников Колумбийского университета под руководством Горданы Вуньяк-Новакович (Gordana Vunjak-Novakovic) получила из стволовых клеток, засеянных на каркас, фрагмент кости, аналогичный части височно-нижнечелюстного сустава.Учёные израильской компании Bonus Biogroup (основатель и исполнительный директор - Пай Мерецки, Shai Meretzki) разрабатывают методы выращивания человеческой кости из жировой ткани пациента, полученной посредством липосакции. Выращенную таким образом кость уже удалось успешно пересадить в лапу крысы.

Итальянским ученым из University of Udine удалось показать, что полученная из единственной клетки жировой ткани популяция мезенхимальных стволовых клеток invitro даже в отсутствие специфического структурного матрикса или подложки может быть дифференцирована в структуру, напоминающую зубной зачаток.

В Токийском университете учёные вырастили из стволовых клеток мышей полноценные зубы, имеющие зубные кости и соединительные волокна, и успешно трансплантировали их в челюсти животных.

Специалистам из Медицинского центра Колумбийского университета (Columbia University Medical Center) под руководством Джереми Мао (Jeremy Mao) удалось добиться восстановления суставных хрящей кроликов.

Сначала исследователи удалили животным хрящевую ткань плечевого сустава, а также находящийся под ней слой костной ткани. Затем на место удаленных тканей им были помещены коллагеновые каркасы.

У тех животных, у которых каркасы содержали трансформирующий фактор роста - белок, который контролирует дифференцировку и рост клеток, вновь сформировалась костная и хрящевая ткань на плечевых костях, а движения в суставе полностью восстановились.

Группе американских ученых из The University of Texasat Austin удалось продвинуться в создании хрящевой ткани с меняющимися в разных участках механическими свойствами и составом внеклеточного матрикса.

В 1997 году, Хирургу Джею Ваканти (Jay Vscanti) из Главной больницы Массачусетса в Бостоне удалось вырастить на спине у мыши человеческое ухо, используя клетки хряща.

Медики Университета Джона Хопкинса удалили пораженное опухолью ухо и часть черепной кости у 42-летней женщины, страдающей раком. Используя хрящевую ткань из грудной клетки, кожу и сосуды из других частей тела пациентки, они вырастили ей искусственное ухо на руке и затем пересадили в нужное место.

Сотрудники Вустерского политехнического института (США) успешно ликвидировали большую рану в мышечной ткани у мышей путём выращивания и вживления состоящих из белкового полимера фибрина микронитей, покрытых слоем человеческих мышечных клеток.

Израильские ученые из Technion-Israel Institute of Technology исследуют необходимую степень васкуляризации и организации ткани invitro, позволяющую улучшить приживаемость и интеграцию тканеинженерного васкуляризированного мышечного импланта в организме реципиента.

Исследователи из Университета Пьера и Марии Кюри в Париже под руководством Люка Дуая (Luc Douay) впервые в мировой практике успешно испытали на людях-добровольцах искусственную кровь, выращенную из стволовых клеток.

Каждый из участников эксперимента получил по 10 миллиардов эритроцитов, что эквивалентно примерно двум миллилитрам крови. Уровни выживаемости полученных клеток оказались сопоставимы с аналогичными показателями обычных эритроцитов.

4.7 Костный мозг

Искусственный костный мозг, предназначенный для производства in vitro клеток крови, впервые успешно был создан исследователями в лаборатории химической инженерии Мичиганского Университета (University of Michigan) под руководством Николая Котова (Nicholas Kotov). С его помощью уже можно получать гемопоэтические стволовые клетки и В-лимфоциты - клетки иммунной системы, продуцирующие антитела

5. Выращивание сложных органов

5.1 Мочевой пузырь

Доктор Энтони Атала (Anthony Atala) и его коллеги из американского университета Вэйк Форест (Wake Forest University) занимаются выращиванием мочевых пузырей из собственных клеток пациентов и их трансплантацией пациентам.

Они отобрали нескольких пациентов и взяли у них биопсию пузыря - образцы мышечных волокон и уротелиальных клеток. Эти клетки размножались семь-восемь недель в чашках Петри на имеющем форму пузыря основании. Затем выращенные таким способом органы были вшиты в организмы пациентов.

Наблюдения за пациентами в течении нескольких лет показали, что органы функционировали благополучно, без негативных эффектов, характерных для более старых методов лечения.

Фактически это первый случай, когда достаточно сложный орган, а не простые ткани, такие, как кожа и кости, был искусственно выращен in vitro и пересажен в человеческий организм. Так же этот коллектив разрабатывает методы выращивания других тканей и органов.

5.2 Трахея

Испанские хирурги провели первую в мире трансплантацию трахеи, выращенной из стволовых клеток пациентки - 30-летней Клаудии Кастильо (Claudia Castillo).

Орган был выращен в университете Бристоля (University of Bristol) на основе донорского каркаса из коллагеновых волокон.

Операцию провёл профессор Паоло Маккиарини (Paolo Macchiarini) из госпиталя Барселоны (Hospital Clнnic de Barcelona).

Профессор Маккиарини активно сотрудничает с Российскими исследователями, что позволило сделать первые операции по пересадке выращенной трахеи в России.

Компания Advanced Cell Technology в 2002 г. сообщила об успешном выращивании полноценной почки из одной клетки, взятой из уха коровы с использованием технологии клонирования для получения стволовых клеток.

Применяя специальное вещество, стволовые клетки превратили в почечные.

Ткань вырастили на каркасе из само разрушающегося материала, созданного в Гарвардской медицинской школе и имеющего форму обычной почки. Полученные в результате почки около 5 см в длину были имплантированы корове рядом с основными органами.

В результате искусственная почка успешно начала вырабатывать мочу.

5.4 Печень

Американские специалисты из Массачусетской больницы общего профиля (Massachusetts General Hospital) под руководством Коркута Югуна (Korkut Uygun) успешно пересадили нескольким крысам печень, выращенную в лаборатории из их собственных клеток.

Исследователи удалили печени у пяти лабораторных крыс, очистили их от клеток хозяина, получив, таким образом, соединительнотканные каркасы органов.

Затем в каждый из пяти полученных каркасов исследователи ввели примерно по 50 миллионов клеток печени, взятых у крыс-реципиентов. В течение двух недель на каждом из заселенных клетками каркасов сформировалась полностью функционирующая печень.

После чего выращенные в лаборатории органы были успешно пересажены пяти крысам.

5.5 Сердце

Ученые из британского госпиталя Хэафилд под руководством Мегди Якуба впервые в истории вырастили часть сердца, использовав в качестве "строительного материала" стволовые клетки. Врачи вырастили ткань, которая работала в точности как сердечные клапаны, ответственные за кровоток в организме людей. Ученые из University of Rostock (Германия) использовали технологию лазерного переноса-печатания клеток (Laser-Induced-Forward-Transfer (LIFT) cellprinting) для изготовления “заплатки”, предназначенной для регенерации сердца.

5.6 Легкие

Американские ученые из Йельского университета (Yale University) под руководством Лауры Никласон (Laura Niklason) вырастили в лаборатории легкие (на донорском внеклеточном матриксе). Матрикс был заполнен клетками эпителия легких и внутренней оболочки кровеносных сосудов, взятых у других особей. С помощью культивации в биореакторе исследователям удалось вырастить новые легкие, которые затем пересадили нескольким крысам. Орган нормально функционировал у разных особей от 45 минут до двух часов после трансплантации. Однако после этого в сосудах легких начали образовываться тромбы. Кроме того, исследователи зафиксировали утечку небольшого количества крови в просвет органа. Тем не менее, исследователям впервые удалось продемонстрировать потенциал регенеративной медицины для трансплантации лёгких.

Заключение

Клеточная (тканевая) инженерия -- отрасль биотехнологии, в которой используют методы выделения клеток из организма, трансформации их и выращивания на питательных средах.

Одним из направлений клеточной инженерии является использование стволовых клеток для восстановления поврежденных тканей и органов. В лабораторных условиях возможно размножение и дальнейшая специализация стволовых клеток. Это открывает перспективы искусственного выращивания тканей и некоторых органов человека и животных с целью их последующего введения в организмы

Еще одним направлением клеточной инженерии является клонирование организмов. Клон (от греч. Клон -- ветвь, отпрыск) -- это совокупность клеток или особей, полученных от общего предка бесполым путем; клон состоит из генетически однородных клеток или организмов. У растений естественное клонирование распространено благодаря бесполом, в частности, вегетативном, размножению. Ученые также получают искусственные клоны растений.

Приложение

Размещено на Allbest.ru

Подобные документы

    Генная инженерия: история возникновения, общая характеристика, преимущества и недостатки. Знакомство с новейшими методами генной инженерии, их использование в медицине. Разработка генной инженерии в области животноводства и птицеводства. Опыты на крысах.

    курсовая работа , добавлен 11.07.2012

    Возникновение биотехнологии. Основные направления биотехнологии. Биоэнергетика как раздел биотехнологии. Практические достижения биотехнологии. История генетической инженерии. Цели, методы и ферменты генной инженерии. Достижения генетической инженерии.

    реферат , добавлен 23.07.2008

    Использование генной инженерии как инструмента биотехнологии с целью управления наследственностью живых организмов. Особенности основных методов и достижений генной инженерии в медицине и сельском хозяйстве, связанные с ней опасности и перспективы.

    доклад , добавлен 10.05.2011

    Методы культивирования соматических клеток человека и животных на искусственных питательных средах как предпосылка к развитию клеточной инженерии. Этапы соматической гибридизации. Перенос генетического материала. Происхождение трансгенных растений.

    реферат , добавлен 23.01.2010

    Понятие и основные методы генной инженерии. Методика выделения ДНК на примере ДНК плазмид. Принципы действия системы рестрикции-модификации. Перенос и обнаружение клонируемых генов в клетках. Конструирование и введение в клетки рекомбинантных молекул ДНК.

    реферат , добавлен 23.01.2010

    Сущность генной и клеточной инженерии. Основные задачи генной модификации растений, анализ вредности их употребления в пищу. Особенности гибридизации растительных и животных клеток. Механизм получения лекарственных веществ с помощью генной инженерии.

    презентация , добавлен 26.01.2014

    Пересадка генов и частей ДНК одного вида в клетки другого организма. История генной инженерии. Отношение к генетически модифицированным организмам в мире. Новые ГМ-сорта. Что несёт человечеству генная инженерия. Какие перспективы генной инженерии.

    презентация , добавлен 24.02.2015

    История, цели и основы генетической инженерии; биоэтические аспекты. Группы генетических заболеваний, их диагностика и лечение. Применение генетической инженерии в медицинской практике: генные вакцины, генотерапия, производство лекарственных препаратов.

    реферат , добавлен 26.10.2011

    Использование клеток, не существовавших в живой природе, в биотехнологических процессах. Выделение генов из клеток, манипуляции с ними, введение в другие организмы в основе задач генной инженерии. История генной инженерии. Проблемы продуктов с ГМО.

    презентация , добавлен 21.02.2014

    Предпосылки возникновения генетики. Основание мутационной теории. Генетика как наука о наследственности: ее исходные законы и развитие. Генная инженерия: научно-исследовательские аспекты и практические результаты. Клонирование органов и тканей.

Тканевая инженерия – это наука о проектировании и изготовлении тканей, включая костную и другие скелетно-мышечные ткани. В основе как тканевой инженерии, так и морфогенеза, лежат три составляющие - морфогенетические сигналы, компетентные стволовые клетки и каркасные структуры. Восстановление скелетно-мышечных тканей обобщает и эмбриональное развитие, и морфогенез. Морфогенез – это развивающаяся группа наук, изучающих образование структур, общее строение организма на пути к взрослому функционированию.

Следовательно, импульсы, вовлеченные в морфогенез, необходимо использовать при инженерии костной ткани. Морфогенетические белки кости несут широконаправленную (плеотропную) функцию в первичном формировании структур, дифференцировке клеток и восстановлении кости и суставного хряща. Способность кости к её изменениям (рекреативная способность) зависит от морфогенетических белков кости в костном матриксе. Морфогенетические белки кости действуют через рецепторы и Smads 1, 5 и 8, стимулируя клеточные линии хряща и кости. Гомеостаз тканеинженерной кости и хряща зависит от поддержания внеклеточного матрикса и биомеханики. Использование морфогенетических белков кости в генной терапии и выделение стволовых клеток в биомиметических каркасных структурах внеклеточного матрикса ведет к функциональности костной ткани. В заключение необходимо отметить, что наше время – это время увлекательных открытий в области функциональной тканевой инженерии, костных импульсов, каркасных структур и стволовых клеток.

Одна из проблем, с которыми сталкивается хирург-ортопед – восстановление и реконструкция большого сегмента кости скелета, поврежденной в результате удаления злокачественной опухоли кости или травмы. Хотя аллогенный трансплантат для крупных сегментов кости завоевал все растущее одобрение, он имеет недостатки в виде возможных трещин. Проблема трещин кости у пациентов с постклимактерическим остеопорозом, метастазами, вызванными раком молочной железы или предстательной железы, и нарушением обмена веществ, таким как при диабете, требует применения к кости принципов тканевой инженерии.

Тканевая инженерия – это наука о проектировании и изготовлении новых тканей для функционального восстановления поврежденных органов и замещения частей организма, утраченных из-за рака, различных заболеваний и травм. Среди многих тканей организма кость имеет высокую способность к восстановлению, и поэтому является эталоном для принципов тканевой инженерии в целом. В ближайшее время накопление знаний в области тканевой инженерии приведет к созданию костных имплантов с заданными параметрами для применения в ортопедической хирургии.

Тремя основными составляющими тканевой инженерии и тканевой регенерации являются сигналы, стволовые клетки и каркасные структуры. Специфичность сигналов зависит от морфогенеза тканей и индуктивных раздражителей в развивающемся эмбрионе. Они в целом воспроизводятся во время регенерации. Костные трансплантаты используются хирургами уже более ста лет. Urist сделал важнейшее открытие показав, что имплантация деминерализованных, лиофильно высушенных сегментов аллогенной кости кролика вызывала формирование новой кости. Показано, что стимулирование костеобразования является последовательным, поэтапным действием, где три ключевых этапа – хемотаксис, митоз и дифференциация имеют место. Хемотаксис – это направленное перемещение клеток под влиянием химических сигналов, высвобождаемых из деминерализованного костного матрикса. Передвижение и последующая адгезия костно-образующих клеток на коллагеновом матриксе определяется наличием в нем фибронектина.

Пик распространения клеток под действием стимуляторов роста, высвобожденных из нерастворимого деминерализованного матрикса, наблюдается на третий день. Формирование хряща достигает своего максимума на 7-8 день, за ним следует инвазия сосудов и, начиная с 9 дня, наблюдается остеогенез. Формирование кости достигает максимума на 10-12 день, на что указывает активность щелочная фосфатазы. Затем следует увеличение объема остеокальцина, костной γ-карбоксиглутаминовой кислоты, содержащей белок (BGP). Новообразованная незрелая кость заполняется красным костным мозгом к 21 дню. Деминерализованная кость за счет выделения костных морфогенетических белков, определяющих первоначальные импульсы к морфогенезу костной ткани, а также формированию множества органов помимо кости, таких как мозг, сердце, почки, легкие, кожа и зубы. Следовательно, можно относиться к морфогенетическим белками кости как к морфогенетическим белкам организма.

J.P. Fisher and A.H. Reddi, Functional Tissue Engineering of Bone: Signals and Scaffolds
Перевод Борисовой Марины

Тканевая инженерия — молодое и развивающееся направление медицины, открывающее перед человечеством новые возможности. Профессия подходит тем, кого интересует химия и биология (см. выбор профессии по интересу к школьным предметам).

В этой статье мы расскажем вам о профессии тканевого инженера — одной из профессий будущего в этом направлении.

Что такое тканевая инженерия?

Это наука, возникшая на границе между клеточной биологией, эмбриологией, биотехнологией, трансплантологией и медицинским материаловедением.

Она специализируется на разработке биологических аналогов органов и тканей, создаваемых из живых клеток и предназначенных для восстановления или замещения их функций.

Кто такой тканевый инженер?

Это специальность, которая станет востребована в ближайшем будущем. В обязанности этого профессионала входит разработка и контроль производственного процесса, подбор материалов и формирование необходимых условий для создания тканеинженерных имплантов (графтов) и их дальнейшей трансплантации. По некоторым данным, эта профессия начнет распространяться после 2020 года.

Разработка и внедрение графта включает в себя ряд стадий:

— вначале необходимо произвести отбор и культивацию клеток;

— затем создается клеточный носитель (матрица) с использованием биосовместимых материалов;

— после этого клетки размещаются на матрице и происходит их размножение в биореакторе;

— наконец имплант помещается в область нефункционирующего органа. При необходимости перед этим графт внедряется в область с хорошим кровоснабжением для его созревания (этот процесс называется префабрикацией).

Исходным материалом могут послужить клетки ткани, которую необходимо регенерировать, или стволовые клетки. При производстве матриц могут применяться различного рода материалы (биокомпозитные, синтетические биологически инертные, природные полимерные).

Где применяются графты

  • Создание искусственных аналогов кожи, помогающих в регенерации кожного покрова при обширных ожогах.
  • Тканеинженерные импланты также обладают большим потенциалом в области кардиологии (биологические аналоги сердечных клапанов, воссоздание артерий, вен и капилляров).
  • Кроме того, они применяются при воссоздании дыхательной системы, органов пищеварения, мочевой системы, желез внешней и внутренней секреции.

Где учиться на тканевого инженера

В данный момент в нашей стране нет образовательных программ, проводящих обучение по данной специальности, существует лишь ряд лабораторий при научно-исследовательских институтах, специализирующихся на тканевой инженерии. Специалисты, желающие развиваться в этой области, могут получить базовое медицинское образование. Также следует рассмотреть возможность обучения за рубежом: в США и Европе активно развиваются магистратуры по данной специальности.

Профессионально важные качества:

  • системность мышления;
  • интерес к работе в междисциплинарной области;
  • готовность к работе в условиях неопределенности;
  • научно-исследовательский интерес;
  • отовность к командной работе.

Профилирующие дисциплины:

  • биология;
  • химия;
  • физика;
  • математика;
  • информатика.

Достижения современной тканевой инженерии

Были созданы и успешно применены аналоги сосков женской груди, тканеинженерный мочевой пузырь и мочеточники. Ведутся исследования в области создания печени, трахеи и элементов кишечника.

Ведущие научно-исследовательские лаборатории работают над воссозданием другого с трудом поддающегося восстановлению человеческого органа — зуба. Сложность заключается в том, что клетки зуба развиваются из нескольких тканей, сочетание которых не удавалось воспроизвести. В настоящее время не полностью воссозданы только ранние этапы формирования зуба.Создание искусственного глаза в настоящее время находится на начальном этапе, однако уже получилось разработать аналоги отдельных его оболочек — роговицы, склеры, радужки.

В то же время, вопрос о том, как интегрировать их в единое целое, пока остается открытым.

Группе немецких ученых из университета г. Киля удалось успешно восстановить нижнюю челюсть пациента, почти целиком удаленную в связи с опухолью.

Стволовые клетки пациента вместе с факторами роста кости поместили в точную копию его челюсти, созданную из титановой сетки. Затем на период инкубации эту конструкцию на 8 недель поместили в его мышцу под правой лопаткой, откуда затем она была пересажена пациенту.

Пока преждевременно говорить о том, насколько эффективно будет функционировать такая челюсть. Однако это первый достоверный случай пересадки кости, буквально выращенной внутри человеческого организма.