В составе рефлекторной дуги выделяют группы нейронов. Схема рефлекторной дуги и кольца. Усвоение и трансформация ритма возбуждения

Основной формой нервной деятельности является рефлекс. Рефлекс - причинно-обусловленная реакция организма на изменения внешней или внутренней среды, осуществляемая при обязательном участии центральной нервной системы в ответ на раздражение рецепторов. За счет рефлексов происходит возникновение, изменение или прекращение какой-либо деятельности организма.

Нервный путь, по которому распространяется возбуждение при осуществлении рефлексов, называют рефлекторной дугой .

Рефлекторные дуги состоят из пяти компонентов: 1) рецептор; 2) афферентный нервный путь; 3) рефлекторный центр; 4) эфферентный нервный путь; 5) эффектор (рабочий орган).

Рецептор - это чувствительное нервное окончание, воспринимающее раздражение. В рецепторах энергия раздражителя превращается в энергию нервного импульса. Различают: 1) экстерорецепторы - возбуждаются под влиянием раздражений из окружающей среды (рецепторы кожи, глаза, внутреннего уха, слизистой оболочки носа и ротовой полости); 2) интерорецепторы - воспринимают раздражения из внутренней среды организма (рецепторы внутренних органов, сосудов); 3) проприорецепторы - реагируют на изменение положения отдельных частей тела в пространстве (рецепторы мышц, сухожилий, связок, суставных сумок).

Афферентный нервный путь представлен отростками рецепторных нейронов, несущих возбуждения в центральную нервную систему.

Рефлекторный центр состоит из группы нейронов, расположенных на различных уровнях центральной нервной системы и передающих нервные импульсы с афферентного на эфферентный нервный путь.

Эфферентный нервный путь проводит нервные импульсы от центральной нервной системы к эффектору.

Эффектор - исполнительный орган, деятельность которого изменяется под влиянием нервных импульсов, поступающих к нему по образованиям рефлекторной дуги. Эффекторами могут быть мышцы или железы.

Рефлекторные дуги могут быть простыми и сложными. Простая рефлекторная дуга состоит из двух нейронов - воспринимающего и эффекторного, между которыми имеется один синапс. Схема такой двухнейронной рефлекторной дуги приведена на рис. 71.

Примером простой рефлекторной дуги являются рефлекторные дуги сухожильных рефлексов, например рефлекторная дуга коленного рефлекса.

Рефлекторные дуги большинства рефлексов включают не два, а большее количество нейронов: рецепторный, один или несколько вставочных и эффекторный. Такие рефлекторные дуги называют сложными, многонейронными. Схема сложной (трехнейронной) рефлекторной дуги приведена на рис. 72.

В настоящее время установлено, что во время ответной реакции эффектора возбуждаются многочисленные нервные окончания, имеющиеся в рабочем органе. Нервные импульсы теперь уже от эффектора вновь поступают в центральную нервную систему и информируют ее о правильности ответа рабочего органа. Таким образом, рефлекторные дуги являются не разомкнутыми, а кольцевыми образованиями.

Рефлексы отличаются большим многообразием. Их можно классифицировать по ряду признаков: 1) по биологическому значению (пищевые, оборонительные, половые); 2) в зависимости от вида раздражаемых рецепторов: экстероцептивные, интероцептивные и проприоцептивные; 3) по характеру ответной реакции: двигательные или моторные (исполнительный орган - мышца), секреторные (эффектор - железа), сосудодвигательные (сужение или расширение кровеносных сосудов).

Все рефлексы целостного организма могут быть разделены на две большие группы: безусловные и условные. Различия между ними будут разобраны в главе XII.

Основной формой нервной деятельности является рефлекс. Рефлекс - причинно-обусловленная реакция организма на изменения внешней или внутренней среды, осуществляемая при обязательном участии центральной нервной системы в ответ на раздражение рецепторов. За счет рефлексов происходит возникновение, изменение или прекращение какой-либо деятельности организма.

Нервный путь, по которому распространяется возбуждение при осуществлении рефлексов, называют рефлекторной дугой .

Рефлекторные дуги состоят из пяти компонентов: 1) рецептор; 2) афферентный нервный путь; 3) рефлекторный центр; 4) эфферентный нервный путь; 5) эффектор (рабочий орган).

Рецептор - это чувствительное нервное окончание, воспринимающее раздражение. В рецепторах энергия раздражителя превращается в энергию нервного импульса. Различают: 1) экстерорецепторы - возбуждаются под влиянием раздражений из окружающей среды (рецепторы кожи, глаза, внутреннего уха, слизистой оболочки носа и ротовой полости); 2) интерорецепторы - воспринимают раздражения из внутренней среды организма (рецепторы внутренних органов, сосудов); 3) проприорецепторы - реагируют на изменение положения отдельных частей тела в пространстве (рецепторы мышц, сухожилий, связок, суставных сумок).

Афферентный нервный путь представлен отростками рецепторных нейронов, несущих возбуждения в центральную нервную систему.

Рефлекторный центр состоит из группы нейронов, расположенных на различных уровнях центральной нервной системы и передающих нервные импульсы с афферентного на эфферентный нервный путь.

Эфферентный нервный путь проводит нервные импульсы от центральной нервной системы к эффектору.

Эффектор - исполнительный орган, деятельность которого изменяется под влиянием нервных импульсов, поступающих к нему по образованиям рефлекторной дуги. Эффекторами могут быть мышцы или железы.

Рефлекторные дуги могут быть простыми и сложными. Простая рефлекторная дуга состоит из двух нейронов - воспринимающего и эффекторного, между которыми имеется один синапс. Схема такой двухнейронной рефлекторной дуги приведена на рис. 71.


Рис. 71. Схема двухнейронной рефлекторной дуги спинномозгового рефлекса. 1 - рецептор; 2 - эффектор (мышца); Р - рецепторный нейрон; М - эффекторный нейрон (мотонейрон)

Примером простой рефлекторной дуги являются рефлекторные дуги сухожильных рефлексов, например рефлекторная дуга коленного рефлекса.

Рефлекторные дуги большинства рефлексов включают не два, а большее количество нейронов: рецепторный, один или несколько вставочных и эффекторный. Такие рефлекторные дуги называют сложными, многонейронными. Схема сложной (трехнейронной) рефлекторной дуги приведена на рис. 72.



Рис. 72. Схема трехнейронной рефлекторной дуги спинномозгового рефлекса. Р - рецепторный нейрон; В - вставочный нейрон; М - мотонейрон

В настоящее время установлено, что во время ответной реакции эффектора возбуждаются многочисленные нервные окончания, имеющиеся в рабочем органе. Нервные импульсы теперь уже от эффектора вновь поступают в центральную нервную систему и информируют ее о правильности ответа рабочего органа. Таким образом, рефлекторные дуги являются не разомкнутыми, а кольцевыми образованиями.

Рефлексы отличаются большим многообразием. Их можно классифицировать по ряду признаков: 1) по биологическому значению (пищевые, оборонительные, половые); 2) в зависимости от вида раздражаемых рецепторов: экстероцептивные, интероцептивные и проприоцептивные; 3) по характеру ответной реакции: двигательные или моторные (исполнительный орган - мышца), секреторные (эффектор - железа), сосудодвигательные (сужение или расширение кровеносных сосудов).

Все рефлексы целостного организма могут быть разделены на две большие группы: безусловные и условные. Различия между ними будут разобраны в главе XII.

Понятие о нервных центрах

От рецепторов нервные импульсы по афферентным путям поступают в нервные центры. Следует различать анатомическое и физиологическое понимание нервного центра.

Анатомическое определение нервного центра . Нервный центр - это совокупность нейронов, расположенных в определенном отделе центральной нервной системы. За счет работы такого нервного центра осуществляется несложная рефлекторная деятельность, например коленный рефлекс. Нервный центр этого рефлекса располагается в поясничном отделе спинного мозга (II-IV сегменты).

Физиологическое понимание нервного центра . Нервный центр - это сложное функциональное объединение нескольких анатомических нервных центров, расположенных на разных уровнях центральной нервной системы и обусловливающих за счет своей активности сложнейшие рефлекторные акты. Например, в осуществлении пищевых реакций участвуют многие органы (железы, мышцы, кровеносные и лимфатические сосуды и т. д.). Деятельность этих органов регулируется нервными импульсами, поступающими из нервных центров, располагающихся в различных отделах центральной нервной системы. При пищевых реакциях различные анатомические нервные центры функционально объединяются для получения определенного полезного результата. А. А. Ухтомский эти функциональные объединения назвал "созвездиями" нервных центров.

Физиологические свойства нервных центров . Нервные центры обладают рядом характерных функциональных свойств, зависящих от наличия синапсов и большого количества нейронов, входящих в их состав. Основными свойствами нервных центров являются: 1) одностороннее проведение возбуждения; 2) задержка проведения возбуждения; 3) суммация возбуждений; 4) трансформация ритма возбуждений; 5) рефлекторное последействие; 6) быстрая утомляемость.

Одностороннее проведение возбуждения . В центральной нервной системе возбуждение распространяется только в одном направлении - от рецепторного нейрона к эффекторному. Это обусловлено наличием в нервных центрах синапсов, в которых передача возбуждения возможна только в одном направлении - от нервного окончания, выделяющего медиатор, к постсинаптической мембране.

Задержка проведения возбуждения в нервных центрах также связана с наличием большого количества синапсов. На выделение медиатора, его диффузию через синаптическую щель, возбуждение постсинаптической мембраны требуется больше времени, чем на распространение возбуждения по нервному волокну.

Суммация возбуждений в нервных центрах возникает или при нанесении слабых, но повторяющихся (ритмичных) раздражений, или при одновременном действии нескольких подпороговых раздражений Механизм этого явления связан с накоплением медиатора на постсинаптической мембране и повышением возбудимости клеток нервного центра. Примером суммации возбуждения может служить рефлекс чихания. Этот рефлекс возникает только при длительном раздражении рецепторов слизистой оболочки носа. Впервые явление суммации возбуждений в нервных центрах описано И. М. Сеченовым в 1863 г.

Трансформация ритма возбуждений . Центральная нервная система на любой ритм раздражения, даже медленный, отвечает залпом импульсов. Частота возбуждений, поступающих из нервных центров на периферию к рабочему органу, колеблется от 50 до 200 в 1 с. Этой особенностью центральной нервной системы объясняется то, что все сокращения скелетных мышц в организме являются тетаническими.

Рефлекторное последействие . Рефлекторные акты заканчиваются не одновременно с прекращением вызвавшего их раздражения, а через некоторый, иногда сравнительно длительный период. Это явление получило название рефлекторного последействия. Установлены два механизма, обусловливающие последействие. Первый связан с тем, что возбуждение в нервных клетках исчезает не сразу после прекращения раздражения. В течение некоторого времени (сотые доли секунды) нервные клетки продолжают давать ритмические разряды импульсов. Этот механизм может обусловить лишь сравнительно кратковременное последействие. Второй механизм является результатом циркуляции нервных импульсов по замкнутым нейронным цепям нервного центра и обеспечивает более длительное последействие. На рис. 73 показана такая замкнутая цепь нейронов.


Рис 73. Кольцевые связи нейронов в нервном центре

Возбуждение одного из нейронов передается на другой, а по ответвлениям его аксона вновь возвращается к первой нервной клетке и т. д. Циркуляция нервных импульсов в нервном центре будет продолжаться до тех пор, пока не наступит утомление одного из синапсов или же активность нейронов не будет приостановлена приходом тормозных импульсов.

Утомление нервных центров . Нервные центры в отличие от нервных волокон легко утомляемы. При продолжительном раздражении афферентных нервных волокон утомление нервного центра проявляется постепенным снижением, а затем и полным прекращением рефлекторного ответа.

Эта особенность нервных центров доказывается следующим образом. После прекращения мышечного сокращения в ответ на раздражение афферентных нервов начинают раздражать эфферентные волокна, иннервирующие мышцу. В этом случае мышца вновь сокращается. Следовательно, утомление развилось не в эфферентных путях; а в нервном центре.

В многочисленных исследованиях установлено, что наиболее утомляемыми являются воспринимающие нейроны (чувствительные и промежуточные) по сравнению с эфферентными нервными клетками рефлекторной дуги. В настоящее время считают, что утомление нервных центров связано прежде всего с нарушением передачи возбуждения в синапсах. Такое нарушение может быть обусловлено уменьшением запасов медиатора или снижением чувствительности к медиатору постсинаптической мембраны нервной клетки.

Рефлекторный тонус нервных центров . В состоянии относительного покоя, без нанесения дополнительных раздражений из нервных центров на периферию к соответствующим органам и тканям поступают разряды нервных импульсов. В покое частота разрядов и количество одновременно работающих нейронов очень небольшие. Редкие импульсы, непрерывно поступающие из нервных центров, обусловливают тонус (умеренное напряжение) скелетных мышц, гладких мышц кишечника и сосудов. Такое постоянное возбуждение нервных центров носит название тонуса нервных центров. Он поддерживается афферентными импульсами, непрерывно поступающими от рецепторов (особенно проприорецепторов), и различными гуморальными влияниями (гормоны, углекислый газ и др.).


Похожая информация.


Нервная деятельность организма человека заключается в передаче импульсов. Одним из результатов подобных передач являются рефлексы. Для того, чтобы некий рефлекс выполнялся организмом, должна быть налажена связь от получения сигнала до ответной реакции на раздражитель.

Рефлекс представляет собой реакцию части организма на видоизменения наружного или внутреннего окружения в результате воздействия на рецепторы. Находиться они могут на поверхности кожи, порождая экстерорецептивные рефлексы, а также на внутренних органах и сосудах, что лежит в основе интерорецессивного или миостатического рефлекса.

Ответные реакции на раздражители по своей природе бывают условными и безусловными. Ко вторым относят рефлексы, дуга которых сформирована уже ко времени рождения. У первых она создается под влиянием внешних факторов.

Из чего состоит дуга рефлекса?

Сама дуга представляет собой весь путь нервного импульса от момента соприкосновения человека с раздражителем до проявления ответной реакции. Рефлекторная дуга содержит различные типы нейронов: рецепторный, эффекторный и вставочный.

Рефлекторная дуга организма человека работает так:

  • рецепторы воспринимают раздражение. Чаще всего такими рецепторами служат отростки нервных волокон центростремительного типа либо нейронов.
  • чувствительное волокно транслирует возбуждение к центральной нервной системе. Структура чувствительного нейрона такова, что его тело располагается вне нервной системы, они цепочкой пролегли в узлах вдоль позвоночника и у основания головного мозга.
  • переключение с волокна чувствительного типа на двигательное происходит в спинном мозге. Головной мозг отвечает за формирование более сложных рефлексов.
  • двигательное волокно несет возбуждение к реагирующему органу. Это волокно является элементом двигательного нейрона.
Artrodex - ваше избавление от боли в суставах!

Эффектор - собственно сам реагирующий орган, отвечает на раздражение. Рефлекторная реакция бывает сократительной, двигательной либо выделительной.

Полисинаптические дуги

К полисинаптическим относится трехнейронная дуга, в которой между рецептором и эффектором располагается нервный центр. Такую дугу наглядно иллюстрирует отдергивание руки в ответ на боль.

Полисинаптические дуги имеют особое строение. Такая цепь обязательно проходит через мозг. В зависимости от локализации нейронов, обрабатывающих сигнал, выделяют:

  • спинномозговые;
  • бульбарные;
  • мезэнцефальные;
  • кортикальные.

Если рефлекс обрабатывается в верхних частях центральной нервной системы, то в его обработке принимают участие и нейроны нижних отделов. Отделы ствола головного мозга и спинной мозг также участвуют в формировании рефлексов высокого уровня.

Какой бы ни был рефлекс, если нарушается непрерывность рефлекторной дуги, то происходит исчезновение рефлекса. Чаще всего такой разрыв происходит в результате травмы либо болезни.

В сложных рефлексах для реакции на раздражитель в звенья цепи включаются различные органы, что может изменять поведение организма и его систем.

Также интересно строение дуги мигательного рефлекса. Этот рефлекс в силу своей сложности позволяет изучить такое движение возбуждения по дуге, которое исследовать в других случаях затруднительно. Рефлекторная дуга этого рефлекса начинается с активизации возбуждающего и тормозящего нейронов одновременно. В зависимости от характера повреждения активизируются различные части дуги. Спровоцировать начало мигательного рефлекса может тройничный нерв - ответ на прикосновение, слуховой - ответ на резкий звук, зрительный - ответ на перепад света или видимую опасность.

Рефлекс имеет раннюю и позднюю составляющие. Поздняя составляющая отвечает за формирование задержки ответа. В качестве эксперимента касаются пальцем кожи века. Глаз закрывается молниеносно. При повторном касании кожи реакция проходит медленнее. После обработки мозгом получаемой информации происходит осознанное торможение приобретенного рефлекса. Благодаря такому торможению, например, женщины очень быстро приучаются красить веки, преодолевая естественное желание века прикрыть роговицу глаза.

Другие варианты полисинаптических дуг также поддаются исследованию, однако они зачастую слишком сложны и не очень наглядны для изучения.

Каких бы высот не достигла наука, базовыми рефлексами для изучения реакции человека остаются мигательный и коленный рефлексы. Изучение и замеры скорости прохождения импульса в тройничном и лицевом нервах являются основой оценки состояния ствола головного мозга при различных патологиях и болях.

Моносинаптическая рефлекторная дуга

Дуга, которая состоит всего из двух нейронов, которых вполне достаточно для импульса, носит название моносинаптической. Классическим примером моносинаптической дуги является коленный рефлекс. Именно поэтому подробная схема рефлекторной дуги колена размещается во всех медицинских учебниках. Особенностью состава такой дуги является то, что она не задействует головной мозг. Коленный рефлекс относится к мышечным безусловным. У человека и других позвоночных такие мышечные рефлексы отвечают за выживание.

Неудивительно, что именно коленный рефлекс проверяется невропатологом как один из показателей состояния соматической нервной системы. При ударе молотком по сухожилию, растягивается мышца, после прохождения раздражения через центростремительное волокно к спинномозговому узлу, сигнал через двигательный нейрон в центробежное волокно. В этом эксперименте рецепторы кожи участия не принимают, тем не менее результат его весьма заметен и силу реакции легко дифференцировать.

Вегетативная рефлекторная дуга обрывается на части, образуя синапс, тогда как в соматической системе путь, преодолеваемый импульсом от рецептора до действующей скелетной мышцы, ничем не прерывается.

План.

Тема: «Высшая нервная деятельность и её становление

Лекция 7

в процессе развития ребенка. Учение об условных рефлексах.»

  1. Рефлекс. Рефлекторная дуга.
  2. Учение об условных рефлексах. Отличие условных рефлексов от безусловных.
  3. Условия, необходимые для образования условного рефлекса.
  4. Понятие о высшей нервной деятельности.
  5. Типы высшей нервной деятельности.
  6. Типологические особенности ВНД у детей и подростков.

В основе деятельности нервной системы лежит рефлекс. Рефлекс - реакция организма на раздражения рецепторов, осуществляемая при посредстве нервной системы.

Термин «рефлекс» был впервые введён Р. Декартом в 1649, хотя конкретных представлений о том, как осуществляется рефлекторная деятельность, в то время ещё не было. Такие сведения были получены лишь значительно позже, когда морфологи приступили к исследованию строения и функций нервных клеток (Р. Дютроше, 1824; К. Эренберг, 1836; Я. Пуркине, 1837; К. Гольджи, 1873; С. Рамон-и-Кахаль, 1909), а физиологами были изучены основные свойства нервной ткани (Л. Гальвани, 1791; К. Маттеуччи, 1847; Э. Дюбуа-Реймон, 1848-49; Н. Е. Введенский, 1901; А. Ф. Самойлов, 1924; Д. С. Воронцов, 1924; и др.).

В конце 19 и начале 20 вв. были созданы карты расположения нервных центров и нервных путей в мозге, а также получены сведения об основных рефлекторных процессах и о локализации функций в мозге, с тех пор постоянно пополняемые и расширяемые (И. М. Сеченов, 1863; Н. А. Миславский, 1885; В. М. Бехтерев, 1903; И. П. Павлов, 1903; Ч. Шеррингтон, 1906; А. А. Ухтомский, 1911; И. С. Бериташвили, 1930; Л. А. Орбели, 1932; Дж. Фултон, 1932; Э. Эдриан, 1932; П. К. Анохин, 1935; К. М. Быков, 1941; Х. Мэгоун, 1946; и др.).

Все рефлекторные процессы связаны с распространением возбуждения по определённым нервным структурам - рефлекторным дугам.

Рефлекторная дуга - совокупность нервных образований, участвующих в осуществлении рефлекса. Впервые термин «рефлекторная дуга», или «нервная дуга», введён в 1850 английским врачом и физиологом М. Холлом при описании анатомических составных частей рефлекса.

В рефлекторную дугу входят:

1) нервные окончания, воспринимающие раздражения, - рецепторы. Рецепторы (лат. receptor - принимающий, от recipio - принимаю, получаю), специальные чувствительные образования, воспринимающие и преобразующие раздражения из внешней или внутренней среды организма и передающие информацию о действующем агенте в нервную систему

2) афферентные (центростремительные) нервные волокна - отростки рецепторных нейронов, осуществляющие передачу импульсов от чувствительных нервных окончаний в центральную нервную систему;



3) нервный центр, т. е. нейроны, воспринимающие возбуждение и передающие его эффекторным нейронам через соответствующие синапсы;

4) эфферентные (центробежные) нервные волокна, проводящие возбуждение от центральной нервной системы на периферию;

5) исполнительный орган, деятельность которого изменяется в результате рефлекса.

Пример : коленный рефлекс возникает при ударе молоточком по плотной связке надколенника (по сухожилию четырехглавой мышцы бедра) ниже коленной чашечки. Рефлекторная дуга : бедренный нерв, II - IV поясничные сегменты спинного мозга. Ответная реакция - сокращение четырехглавого разгибателя бедра и разгибание голени.

Рис. 15 Схема рефлекторной дуги болевого рефлекса.

.Учение об условных рефлексах. Отличие условных рефлексов от безусловных.

И.П.Павлов показал, что все рефлекторные реакции можно разделить на две группы: безусловные и условные.

Безусловные рефлексы - врожденные ответные реакции организма, одинаковые у особей данного вида. Они характеризуются постоянной и однозначной связью между воздействием на тот или иной рецептор и определенной ответной реакцией, обеспечивающей приспособление организмов к стабильным условиям жизни.

Безусловные рефлексы осуществляются, как правило, с помощью спинного и низших отделов головного мозга.

Безусловные рефлексы могут быть простыми и сложными. Сложные врожденные безусловно-рефлекторные реакции называются инстинктами . Их характерной особенностью является цепной характер реакций.

Условные рефлексы - приобретенные при жизни организма реакции в ответ на раздражение рецепторов; у высших животных и у человека. Это сложная многокомпонентная реакция, которая вырабатывается на базе безусловных рефлексов с использованием предшествующего индифферентного раздражителя.

Условные рефлексы вырабатываются путем образования временных связей в коре головного мозга и служат механизмом приспособления к сложным изменчивым условиям внешней среды. По современным представлениям, условные рефлексы заканчивается не действием, а восприятием и оценкой его результата (обратная связь). Он имеет сигнальный характер, и организм встречает воздействие безусловного раздражителя подготовленным.

Например, в предстартовый период у спортсменов происходит перераспределение крови, усиление дыхания и кровообращения, и когда мышечная нагрузка начинается, организм уже к ней подготовлен.

Безусловные рефлексы Условные рефлексы
1. Врожденные, наследственно передающиеся реакции, большинство из них начинают функционировать сразу же после рождения. 1. Реакции, приобретенные в процессе индивидуальной жизни.
2. Являются видовыми, т.е. свойственны всем представителям данного вида. 2. Индивидуальные.
3. Постоянны и сохраняются в течение всей жизни. 3. Непостоянны - могут возникать и исчезать.
4. Осуществляются за счет низших отделов ЦНС (подкорковые ядра, ствол мозга, спинной мозг). 4. Являются преимущественно функцией коры больших полушарий.
5. Возникают в ответ на адекватные раздражения, действующие на определенное рецептивное поле. 5. Возникают на любые раздражители, действующие на разные рецептивные поля.

Даже отдельно взятый нейрон обладает способностью воспринимать, анализировать, интегрировать множество поступающих к нему сигналов и отвечать на них адекватной реакцией. Еще большими возможностями в восприятии, анализе и интеграции разнообразных сигналов обладают и центральная нервная система в целом. Нервные центры ЦНС способны отвечать на воздействия не только простыми, автоматизированными ответными реакциями, но и принимать решения, обеспечивающие осуществление тонких приспособительных реакций при изменении условий существования.

3) наличие нервных волокон группы С и В;

4) сокращение мышц по типу тетануса.

Особенности вегетативного рефлекса:

1) вставочный нейрон находится в боковых рогах;

2) от боковых рогов начинается преганглионарный нервный путь, после ганглия – постганглионарный;

3) эфферентный путь рефлекса вегетативной нервной дуги прерывается вегетативным ганглием, в котором лежит эфферентный нейрон.

Отличие симпатической нервной дуги от парасимпатической: у симпатической нервной дуги преганглионарный путь короткий, так как вегетативный ганглий лежит ближе к спинному мозгу, а постганглионарный путь длинный.

У парасимпатической дуги все наоборот: преганглионарный путь длинный, так как ганглий лежит близко к органу или в самом органе, а постганглионарный путь короткий.

Конец работы -

Эта тема принадлежит разделу:

ЛЕКЦИЯ № 1

Нормальная физиология биологическая дисциплина изучающая... функции целостного организма и отдельных физиологических систем например... функции отдельных клеток и клеточных структур входящих в состав органов и тканей например роль миоцитов и...

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Физиологическая характеристика возбудимых тканей
Основным свойством любой ткани является раздражимость, т. е. способность ткани изменять свои физиологические свойства и проявлять функциональные отправления в ответ на действие раз

Законы раздражения возбудимых тканей
Законы устанавливают зависимость ответной реакции ткани от параметров раздражителя. Эта зависимость характерна для высоко организованных тканей. Существуют три закона раздражения возбудимых тканей:

Понятие о состоянии покоя и активности возбудимых тканей
О состоянии покояв возбудимых тканях говорят в том случае, когда на ткань не действует раздражитель из внешней или внутренней среды. При этом наблюдается относительно постоянный ур

Физико-химические механизмы возникновения потенциала покоя
Мембранный потенциал (или потенциал покоя) – это разность потенциалов между наружной и внутренней поверхностью мембраны в состоянии относительного физиологического покоя. Потенциал покоя возникает

Физико-химические механизмы возникновения потенциала действия
Потенциал действия– это сдвиг мембранного потенциала, возникающий в ткани при действии порогового и сверхпорогового раздражителя, что сопровождается перезарядкой клеточной мембраны

Высоковольтный пиковый потенциал (спайк).
Пик потенциала действия является постоянным компонентом потенциала действия. Он состоит из двух фаз: 1) восходящей части – фазы деполяризации; 2) нисходящей части – фазы реполяриз

Физиология нервов и нервных волокон. Типы нервных волокон
Физиологические свойства нервных волокон: 1) возбудимость– способность приходить в состояние возбуждения в ответ на раздражение; 2) проводимость–

Механизмы проведения возбуждения по нервному волокну. Законы проведения возбуждения по нервному волокну
Механизм проведения возбуждения по нервным волокнам зависит от их типа. Существуют два типа нервных волокон: миелиновые и безмиелиновые. Процессы метаболизма в безмиелиновых волокнах не об

Закон изолированного проведения возбуждения.
Существует ряд особенностей распространения возбуждения в периферических, мякотных и безмякотных нервных волокнах. В периферических нервных волокнах возбуждение передается только вдоль нер

Физические и физиологические свойства скелетных, сердечной и гладких мышц
По морфологическим признакам выделяют три группы мышц: 1) поперечно-полосатые мышцы (скелетные мышцы); 2) гладкие мышцы; 3) сердечную мышцу (или миокард).

Физиологические особенности гладких мышц.
Гладкие мышцы имеют те же физиологические свойства, что и скелетные мышцы, но имеют и свои особенности: 1) нестабильный мембранный потенциал, который поддерживает мышцы в состоянии постоян

Электрохимический этап мышечного сокращения.
1. Генерация потенциала действия. Передача возбуждения на мышечное волокно происходит с помощью ацетилхолина. Взаимодействие ацетилхолина (АХ) с холинорецепторами приводит к их активации и появлени

Хемомеханический этап мышечного сокращения.
Теория хемомеханического этапа мышечного сокращения была разработана О. Хаксли в 1954 г. и дополнена в 1963 г. М. Девисом. Основные положения этой теории: 1) ионы Ca запускают механизм мыш

ХР-ХЭ-ХР-ХЭ-ХР-ХЭ.
ХР + АХ = МПКП – миниатюрные потенциалы концевой пластины. Затем происходит суммация МПКП. В результате суммации образуется ВПСП – возбуждающий постсинаптический п

Норадреналин, изонорадреналин, адреналин, гистамин являются как тормозными, так и возбуждающими.
АХ (ацетилхолин)является самым распространенным медиатором в ЦНС и в периферической нервной системе. Содержание АХ в различных структурах нервной системы неодинаково. С филогенетич

Основные принципы функционирования ЦНС. Строение, функции, методы изучения ЦНС
Основным принципом функционирования ЦНС является процесс регуляции, управления физиологическими функциями , которые направлены на поддержание постоянства свойств и состава внутренней среды организма

Нейрон. Оособенности строения, значение, виды
Структурной и функциональной единицей нервной ткани является нервная клетка – нейрон. Нейрон – специализированная клетка, которая способна принимать, кодировать, передават

Функциональные системы организма
Функциональная система – временное функциональное объединение нервных центров различных органов и систем организма для достижения конечного полезного результата. Полезный р

Координационная деятельность ЦНС
Координационная деятельность (КД) ЦНС представляет собой согласованную работу нейронов ЦНС, основанную на взаимодействии нейронов между собой. Функции КД: 1) обес

Виды торможения, взаимодействие процессов возбуждения и торможения в ЦНС. Опыт И. М. Сеченова
Торможение– активный процесс, возникающий при действии раздражителей на ткань, проявляется в подавлении другого возбуждения, функционального отправления ткани нет. Торможе

Методы изучения ЦНС
Существуют два большие группы методов изучения ЦНС: 1) экспериментальный метод, который проводится на животных; 2) клинический метод, который применим к человеку. К числу

Физиология спинного мозга
Спинной мозг – наиболее древнее образование ЦНС. Характерная особенность строения – сегментарность. Нейроны спинного мозга образуют его серое веществов ви

Структурные образования заднего мозга.
1. V–XII пара черепных нервов. 2. Вестибулярные ядра. 3. Ядра ретикулярной формации. Основные функции заднего мозга проводниковая и рефлекторная. Через задний мо

Физиология промежуточного мозга
В состав промежуточного мозга входят таламус и гипоталамус, они связывают ствол мозга с корой большого мозга. Таламус– парное образование, наиболее крупное скопление серог

Физиология ретикулярной формации и лимбической системы
Ретикулярная формация ствола мозга– скопление полиморфных нейронов по ходу ствола мозга. Физиологическая особенность нейронов ретикулярной формации: 1) самопроизв

Физиология коры больших полушарий
Высшим отделом ЦНС является кора больших полушарий, ее площадь составляет 2200 см2. Кора больших полушарий имеет пяти-, шестислойное строение. Нейроны представлены сенсорными, м

Совместная работа больших полушарий и их асимметрия.
Для совместной работы полушарий имеются морфологические предпосылки. осуществляет горизонтальную связь с подкорковыми образованиями и ретикулярной формацией ствола мозга. Таким обра

Анатомические свойства
1. Трехкомпонентное очаговое расположение нервных центров. Низший уровень симпатического отдела представлен боковыми рогами с VII шейного по III–IV поясничные позвонки, а парасимпатического – крест

Физиологические свойства
1. Особенности функционирования вегетативных ганглиев. Наличие феномена мультипликации (одновременного протекания двух противоположных процессов – дивергенции и конвергенции). Дивергенция – расхожд

Функции симпатической, парасимпатической и метсимпатической видов нервной системы
Симпатическая нервная системаосуществляет иннервацию всех органов и тканей (стимулирует работу сердца, увеличивает просвет дыхательных путей , тормозит секреторную, моторную и всасы

Общие представления об эндокринных железах
Железы внутренней секреции– специализированные органы, не имеющие выводных протоков и выделяющие секрет в кровь, церебральную жидкость, лимфу через межклеточные щели. Эндо

Свойства гормонов, механизм их действия
Выделяют три основных свойства гормонов: 1) дистантный характер действия (органы и системы, на которые действует гормон, расположены далеко от места его образования); 2) строгую с

Синтез, секреция и выделение гормонов из организма
Биосинтез гормонов– цепь биохимический реакций, которые формируют структуру гормональной молекулы. Эти реакции протекают спонтанно и генетически закреплены в соответствующих эндокр

Регуляция деятельности эндокринных желез
Все процессы, происходящие в организме, имеют специфические механизмы регуляции. Один из уровней регуляции – внутриклеточный, действующий на уровне клетки. Как и многие многоступенчатые биохимическ

Гормоны передней доли гипофиза
Гипофиз занимает особое положение в системе эндокринных желез. Его называют центральной железой, так как за счет его тропных гормонов регулируется деятельность других эндокринных желез. Гипофиз – с

Гормоны средней и задней долей гипофиза
В средней доле гипофиза вырабатывается гормон меланотропин(интермедин), который оказывает влияние на пигментный обмен. Задняя доля гипофиза тесно связана с супраоптическим

Гипоталамическая регуляция образования гормонов гипофиза
Нейроны гипоталамуса вырабатывают нейросекрет. Продукты нейросекреции, которые способствуют образованию гормонов передней доли гипофиза, называются либеринами, а тормозящие их образование – статина

Гормоны эпифиза, тимуса, паращитовидных желез
Эпифиз находится над верхними буграми четверохолмия. Значение эпифиза крайне противоречиво. Из его ткани выделены два соединения: 1) мелатонин(принимает участие в регуляци

Гормоны щитовидной железы. Йодированные гормоны. Тиреокальцитонин. Нарушение функции щитовидной железы
Щитовидная железа расположена с обеих сторон трахеи ниже щитовидного хряща, имеет дольчатое строение. Структурной единицей является фолликул, заполненный коллоидом, где находится йодсодержащий бело

Гормоны поджелудочной железы. Нарушение функции поджелудочной железы
Поджелудочная железа – железа со смешанной функцией. Морфологической единицей железы служат островки Лангерганса, преимущественно они расположены в хвосте железы. Бета-клетки островков вырабатывают

Нарушение функции поджелудочной железы.
Уменьшение секреции инсулина приводит к развитию сахарного диабета , основными симптомами которого являются гипергликемия, глюкозурия, полиурия (до 10 л в сутки), полифагия (усиленный аппетит), поли

Гормоны надпочечников. Глюкокортикоиды
Надпочечники – парные железы, расположенные над верхними полюсами почек. Они имеют важное жизненное значение. Различают два типа гормонов: гормоны коркового слоя и гормоны мозгового слоя.

Физиологическое значение глюкокортикоидов.
Глюкокортикоиды влияют на обмен углеводов, белков и жиров, усиливают процесс образования глюкозы из белков, повышают отложение гликогена в печени, по своему действию являются антагонистами инсулина

Регуляция образования глюкокортикоидов.
Важную роль в образовании глюкокортикоидов играет кортикотропин передней доли гипофиза. Это влияние осуществляется по принципу прямых и обратных связей: кортикотропин повышает продукцию глюкокортик

Гормоны надпочечников. Минералокортикоиды. Половые гормоны
Минералокортикоиды образуются в клубочковой зоне коры надпочечников и принимают участие в регуляции минерального обмена. К ним относятся альдостерони дезоксикортикостерон

Регуляция образования минералокортикоидов
Регуляция секрета и образования альдостерона осуществляется системой «ренин-ангиотензин». Ренин образуется в специальных клетках юкстагломерулярного аппарата афферентных артериол почки и выделяется

Значение адреналина и норадреналина
Адреналин выполняет функцию гормона, он поступает в кровь постоянно, при различных состояниях организма (кровопотере, стрессе, мышечной деятельности) происходит увеличение его образования и выделен

Половые гормоны. Менструальный цикл
Половые железы (семенники у мужчин, яичники у женщин) относятся к железам со смешанной функцией, внутрисекреторная функция проявляется в образовании и секреции половых гормонов, которые непосредств

Менструальный цикл включает четыре периода.
1. Предовуляционный (с пятого по четырнадцатый день). Изменения обусловлены действием фоллитропина, в яичниках происходит усиленное образование эстрогенов, они стимулируют рост матки, разрастание с

Гормоны плаценты. Понятие о тканевых гормонах и антигормонах
Плацента – уникальное образование, которое связывает материнский организм с плодом. Она выполняет многочисленные функции, в том числе метаболическую и гормональную. Она синтезирует гормоны двух гру

Понятие о высшей и низшей нервной деятельности
Низшая нервная деятельность представляет собой интегративную функцию спинного и ствола головного мозга, которая направлена на регуляцию вегетативно-висцеральных рефлексов. С ее помощью обеспечивают

Образование условных рефлексов
Для образования условных рефлексов необходимы определенные условия. 1. Наличие двух раздражителей – индифферентного и безусловного. Это связано с тем, что адекватный раздражитель вызовет б

Торможение условных рефлексов. Понятие о динамическом стереотипе
В основе этого процесса лежат два механизма: безусловное (внешнее) и условное (внутреннее) торможение. Безусловное торможение возникает мгновенно вследствие прекращения ус

Понятие о типах нервной системы
Тип нервной системы напрямую зависит от интенсивности процессов торможения и возбуждения и условий, необходимых для их выработки. Тип нервной системы– это совокупность процессов, п

Понятие о сигнальных системах. Этапы образования сигнальных систем
Сигнальная система– набор условно-рефлекторных связей организма с окружающей средой, который впоследствии служит основой для формирования высшей нервной деятельности . По времени об

Компоненты системы кровообращения. Круги кровообращения
Система кровообращения состоит из четырех компонентов: сердца, кровеносных сосудов, органов – депо крови, механизмов регуляции. Система кровообращения является составляющим компонентом сер

Морфофункциональные особенности сердца
Сердце является четырехкамерным органом, состоящим из двух предсердий, двух желудочков и двух ушек предсердий. Именно с сокращения предсердий и начинается работа сердца. Масса сердца у взрослого че

Физиология миокарда. Проводящая система миокарда. Свойства атипического миокарда
Миокард представлен поперечно-полосатой мышечной тканью , состоящей из отдельных клеток – кардиомиоцитов, соединенных между собой с помощью нексусов, и образующих мышечное волокно миокарда. Таким об

Автоматия сердца
Автоматия– это способность сердца сокращаться под влиянием импульсов, возникающих в нем самом. Обнаружено, что в клетках атипического миокарда могут генерироваться нервные импульсы

Энергетическое обеспечение миокарда
Для работы сердца как насоса необходимо достаточное количество энергии. Процесс обеспечения энергией складывается из трех этапов: 1) образования; 2) транспорта;

АТФ-АДФ-трансферазы и креатинфосфокиназы
АТФ путем активного транспорта при участии фермента АТФ-АДФ-трансферазы переносится на наружную поверхность мембраны митохондрий и с помощью активного центра креатинфосфокиназы и ионов Mg доставляю

Коронарный кровоток, его особенности
Для полноценной работы миокарда необходимо достаточное поступление кислорода, которое обеспечивают коронарные артерии. Они начинаются у основания дуги аорты. Правая коронарная артерия кровоснабжает

Рефлекторные влияния на деятельность сердца
За двустороннюю связь сердца с ЦНС отвечают так называемые кардиальные рефлексы. В настоящее время выделяют три рефлекторных влияния – собственные, сопряженные, неспецифические. Собственны

Нервная регуляция деятельности сердца
Нервная регуляция характеризуется рядом особенностей. 1. Нервная система оказывает пусковое и корригирующее влияние на работу сердца, обеспечивая приспособление к потребностям организма.

Гуморальная регуляция деятельности сердца
Факторы гуморальной регуляции делят на две группы: 1) вещества системного действия; 2) вещества местного действия. К веществам системного действияотносят

Сосудистый тонус и его регуляция
Сосудистый тонус в зависимости от происхождения может быть миогенным и нервным. Миогенный тонус возникает, когда некоторые гладкомышечные клетки сосудов начинают спонтанно генерировать нер

Функциональная система, поддерживающая на постоянном уровне величину кровяного давления
Функциональная система, поддерживающая на постоянном уровне величину кровяного давления, – временная совокупность органов и тканей, формирующаяся при отклонении показателей с целью

Гистогематический барьер и его физиологическая роль
Гистогематический барьер– это барьер между кровью и тканью. Впервые были обнаружены советскими физиологами в 1929 г. Морфологическим субстратом гистогематического барьера является

Сущность и значение процессов дыхания
Дыхание является наиболее древним процессом, с помощью которого осуществляется регенерация газового состава внутренней среды организма. В результате органы и ткани снабжаются кислородом, а отдают у

Аппарат внешнего дыхания. Значение компонентов
У человека внешнее дыхание осуществляется с помощью специального аппарата, основная функция которого заключается в обмене газов между организмом и внешней средой. Аппарат внешнего дыхания

Механизм вдоха и выдоха
У взрослого человека частота дыхания составляет примерно 16–18 дыхательных движений в минуту. Она зависит от интенсивности обменных процессов и газового состава крови. Дыхательный

Понятие о паттерне дыхания
Паттерн– совокупность временных и объемных характеристик дыхательного центра, таких как: 1) частота дыхания; 2) продолжительность дыхательного цикла ; 3)

Физиологическая характеристика дыхательного центра
По современным представлениям дыхательный центр– это совокупность нейронов, обеспечивающих смену процессов вдоха и выдоха и адаптацию системы к потребностям организма. Выделяют нес

Гуморальная регуляция нейронов дыхательного центра
Впервые гуморальные механизмы регуляции были описаны в опыте Г. Фредерика в 1860 г., а затем изучались отдельными учеными, в том числе И. П. Павловым и И. М. Сеченовым. Г. Фредерик провел

Нервная регуляция активности нейронов дыхательного центра
Нервная регуляция осуществляется в основном рефлекторными путями. Выделяют две группы влияний – эпизодические и постоянные. К постоянным относятся три вида: 1) от периферических х

Гомеостаз. Биологические константы
Понятие о внутренней среде организма было введено в 1865 г. Клодом Бернаром. Она представляет собой совокупность жидкостей организма, омывающих все органы и ткани и принимающих участие в обменных п

Понятие о системе крови, ее функции и значение. Физико-химические свойства крови
Понятие системы крови было введено в 1830-х гг. Х. Лангом. Кровь – это физиологическая система, которая включает в себя: 1) периферическую (циркулирующую и депонированную) кровь;

Плазма крови, ее состав
Плазма составляет жидкую часть крови и является водно-солевым раствором белков. Состоит на 90–95 % из воды и на 8-10 % из сухого остатка. В состав сухого остатка входят неорганические и органически

Физиология эритроцитов
Эритроциты – красные кровяные тельца, содержащие дыхательный пигмент – гемоглобин. Эти безъядерные клетки образуются в красном костном мозге, а разрушаются в селезенке. В зависимости от размеров де

Виды гемоглобина и его значение
Гемоглобин относится к числу важнейших дыхательных белков, принимающих участие в переносе кислорода от легких к тканям. Он является основным компонентом эритроцитов крови, в каждом из них содержитс

Физиология лейкоцитов
Лейкоциты– ядросодержащие клетки крови, размеры которых от 4 до 20 мкм. Продолжительность их жизни сильно варьируется и составляет от 4–5 до 20 дней для гранулоцитов и до 100 дней

Физиология тромбоцитов
Тромбоциты– безъядерные клетки крови, диаметром 1,5–3,5 мкм. Они имеют уплощенную форму, и их количество у мужчин и женщин одинаково и составляет 180–320 × 109/л.

Иммунологические основы определения группы крови
Карл Ландштайнер обнаружил, что эритроциты одних людей склеиваются плазмой крови других людей. Ученый установил существование в эритроцитах особых антигенов – агглютиногенов и предположил наличие в

Антигенная система эритроцитов, иммунный конфликт
Антигены – высокомолекулярные полимеры естественного или искусственного происхождения, которые несут признаки генетически чужеродной информации. Антитела – это иммуноглобулины, образующиес

Структурные компоненты гемостаза
Гемостаз– сложная биологическая система приспособительных реакций, обеспечивающая сохранение жидкого состояния крови в сосудистом русле и остановку кровотечений из поврежденных сос

Функции системы гемостаза.
1. Поддержание крови в сосудистом русле в жидком состоянии. 2. Остановка кровотечения. 3. Опосредование межбелковых и межклеточных взаимодействий. 4. Опсоническая – очист

Механизмы образования тромбоцитарного и коагуляционного тромба
Сосудисто-тромбоцитарный механизм гемостаза обеспечивает остановку кровотечения в мельчайших сосудах, где имеются низкое кровяное давление и малый просвет сосудов. Остановка кровотечения может прои

Факторы свертывания крови
В процессе свертывания крови принимают участие много факторов, они называются факторами свертывания крови, содержатся в плазме крови, форменных элементах и тканях. Плазменные факторы свертывания кр

Фазы свертывания крови
Свертывание крови– это сложный ферментативный, цепной (каскадный), матричный процесс, сущность которого состоит в переходе растворимого белка фибриногена в нерастворимый белок фибр

Физиология фибринолиза
Система фибринолиза– ферментативная система, расщепляющая нити фибрина, которые образовались в процессе свертывания крови, на растворимые комплексы. Система фибринолиза полностью п

Процесс фибринолиза проходит в три фазы.
Во время I фазы лизокиназы, поступая в кровь, приводят проактиватор плазминогена в активное состояние. Эта реакция осуществляется в результате отщепления от проактиватора ряда аминокислот.

Почки выполняют в организме ряд функций.
1. Регулируют объем крови и внеклеточной жидкости (осуществляют волюморегуляцию), при увеличении объема крови волюморецепторы левого предсердия активируются: угнетается секреция антидиуретического

Строение нефрона
Нефрон– функциональная почечная единица, где происходит образование мочи. В состав нефрона входят: 1) почечное тельце (двустенная капсула клубочка, внутри

Механизм канальцевой реабсорбции
Реабсорбция– процесс обратного всасывания ценных для организма веществ из первичной мочи. В различных частях канальцев нефрона всасываются различные вещества. В проксимальном отдел

Понятие о системе пищеварения. Ее функции
Система пищеварения– сложная физиологическая система, обеспечивающая переваривание пищи, всасывание питательных компонентов и адаптацию этого процесса к условиям существования.

Типы пищеварения
Выделяют три типа пищеварения: 1) внеклеточное; 2) внутриклеточное; 3) мембранное. Внеклеточное пищеварение происходит за пределами клетки, кото

Секреторная функция системы пищеварения
Секреторная функция пищеварительных желез заключается в выделении в просвет желудочно-кишечного тракта секретов, принимающих участие в обработке пищи. Для их образования клетки должны получать опре

Моторная деятельность желудочно-кишечного тракта
Моторная деятельность представляет собой координированную работу гладких мышц желудочно-кишечного тракта и специальных скелетных мышц. Они лежат в три слоя и состоят из циркулярно расположенных мыш

Регуляция моторной деятельности желудочно-кишечного тракта
Особенностью моторной деятельности является способность некоторых клеток желудочно-кишечного тракта к ритмической спонтанной деполяризации. Это значит, что они могут ритмически возбуждаться. В резу

Механизм работы сфинктеров
Сфинктер– утолщение гладкомышечных слоев, за счет которых весь желудочно-кишечный тракт делится на определенные отделы. Существуют следующие сфинктеры: 1) кардиальный;

Физиология всасывания
Всасывание– процесс переноса питательных веществ из полости желудочно-кишечного тракта во внутреннюю среду организма – кровь и лимфу. Всасывание происходит на протяжении всего желу

Механизм всасывания воды и минеральных веществ
Всасывание осуществляется за счет физико-химический механизмов и физиологических закономерностей. В основе этого процесса лежат активный и пассивный виды транспорта. Большое значение имеет строение

Механизмы всасывания углеводов, жиров и белков
Всасывание углеводов происходит в виде конечных продуктов метаболизма (моно– и дисахаридов) в верхней трети тонкого кишечника. Глюкоза и галактоза поглощаются путем активного транспорта, причем вса

Механизмы регуляции процессов всасывания
Нормальная функция клеток слизистой оболочки желудочно-кишечного такта регулируется нейрогуморальными и местными механизмами. В тонком кишечнике основная роль принадлежит местному способу,

Физиология пищеварительного центра
Первые представления о строении и функциях пищевого центра были обобщены И. П. Павловым в 1911 г. По современным представлениям пищевой центр – это совокупность нейронов, расположенных на разных ур

Рефлекторная дуга

Коленный рефлекс.

Рефлекторная дуга (нервная дуга) - путь, проходимый нервными импульсами при осуществлении рефлекса.

Рефлекторная дуга состоит из:

  • рецептора - нервное звено, воспринимающее раздражение;
  • афферентного звена - центростремительное нервное волокно - отростки рецепторных нейронов, осуществляющие передачу импульсов от чувствительных нервных окончаний в центральную нервную систему;
  • центрального звена - нервный центр (необязательный элемент, например для аксон-рефлекса);
  • эфферентного звена - осуществляют передачу от нервного центра к эффектору.
  • эффектора - исполнительный орган, деятельность которого изменяется в результате рефлекса.

Различают:

  • моносинаптические, двухнейронные рефлекторные дуги;
  • полисинаптические рефлекторные дуги (включают три и более нейронов).

Во многих случаях сенсорный нейрон передает информацию (обычно через несколько вставочных нейронов) в головной мозг. Головной мозг обрабатывает поступающую сенсорную информацию и накапливает её для последующего использования. Наряду с этим головной мозг может посылать моторные нервные импульсы по нисходящему пути непосредственно к спинальным

Рефлекс и рефлекторная дуга

Pефлекс (от лат. "рефлексус" - отражение) - реакция организма на изменения внешней или внутренней среды, осуществляемая при посредстве центральной нервной системы в ответ на раздражение рецепторов.

Рефлексы проявляются в возникновении или прекращении какой-либо деятельности организма: в сокращении или расслаблении мышц, в секреции или прекращении секреции желез, в сужении или расширении сосудов и т. п.

Благодаря рефлекторной деятельности организм способен быстро реагировать на различные изменения внешней среды или своего внутреннего состояния и приспособляться к этим изменениям. У позвоночных животных значение рефлекторной функции центральной нервной системы настолько велико, что даже частичное выпадение ее (при оперативном удалении отдельных участков нервной системы или при заболеваниях ее) часто ведет к глубокой инвалидности и невозможности осуществлять необходимые жизненные функции без постоянного тщательного ухода.

Значение рефлекторной деятельности центральной нервной системы в полной мере было раскрыто классическими трудами И. М. Сеченова и И. П. Павлова. И. М. Сеченов еще в 1862 г. в своем составившем эпоху труде "Рефлексы головного мозга" утверждал: "Все акты сознательной и бессознательной жизни по способу происхождения суть рефлексы".

Виды рефлексов

Все рефлекторные акты целостного организма разделяют на безусловные и условные рефлексы .

Безусловные рефлексы передаются по наследству, они присущи каждому биологическому виду; их дуги формируются к моменту рождения и в норме сохраняются в течение всей жизни. Однако они могут изменяться под влиянием болезни.

Условные рефлексы возникают при индивидуальном развитии и накоплении новых навыков. Выработка новых временных связей зависит от изменяющихся условий среды. Условные рефлексы формируются на основе безусловных и с участием высших отделов головного мозга.

Безусловные и условные рефлексы можно классифицировать на различные группы по ряду признаков.

    По биологическому значению

    1. оборонительные

      ориентировочные

      позно-тонические (рефлексы положения тела в пространстве)

      локомоторные (рефлексы передвижения тела в пространстве)

    По расположению рецепторов, раздражение которых вызывает данный рефлекторный акт

      экстерорецептивный рефлекс - раздражение рецепторов внешней поверхноcти тела

      висцеро- или интерорецептивный рефлекс - возникающий при раздражении рецепторов внутренних органов и сосудов

      проприорецептивный (миотатический) рефлекс - раздражение рецепторов скелетных мышц, суставов, сухожилий

    По месту расположения нейронов, участвующих в рефлексе

      спинальные рефлексы - нейроны расположены в спинном мозге

      бульбарные рефлексы - осуществляемые при обязательном участии нейронов продолговатого мозга

      мезэнцефальные рефлексы - осуществляемые при участии нейронов среднего мозга

      диэнцефальные рефлексы - участвуют нейроны промежуточного мозга

      кортикальные рефлексы - осуществляемые при участии нейронов коры больших полушарий головного мозга

NB! (Nota bene - обрати внимание!)

В рефлекторных актах, осуществляемых при участии нейронов, расположенных в высших отделах центральной нервной системы, всегда участвуют и нейроны, находящиеся в низших отделах - в промежуточном, среднем, продолговатом и спинном мозгу. С другой стороны, при рефлексах, которые осуществляются спинным или продолговатым, средним или промежуточным мозгом, нервные импульсы доходят до высших отделов центральной нервной системы. Таким образом, эта классификация рефлекторных актов до некоторой степени условна.

    По характеру ответной реакции, в зависимости от того, какие органы в ней участвуют

      моторные, или двигательные рефлексы - исполнительным органом служат мышцы;

      секреторные рефлексы - заканчиваются секрецией желез;

      сосудодвигателъные рефлексы - проявляющиеся в сужении или расширении кровеносных сосудов.

NB! Эта классификация приемлема к более или менее простым рефлексам, направленным на объединение функций внутри организма. При сложных же рефлексах, в которых участвуют нейроны, находящиеся в высших отделах центральной нервной системы, как правило, в осуществление рефлекторной реакции вовлекаются различные исполнительные органы, в результетате чего происходит изменение соотношения организма с внешней средой, изменение поведения организма.

Примеры некоторых относительно простых рефлексов, наиболее часто исследуемых в условиях лабораторного эксперимента на животном или в клинике при заболеваниях нервной системы человека [показать] .

Как уже отмечалось выше, подобная классификация рефлексов условна: если какой-либо рефлекс может быть получен при сохранности того или иного отдела центральной нервной системы и разрушении вышележащих отделов, то это не означает, что данный рефлекс осуществляется в нормальном организме только при участии этого отдела: в каждом рефлексе участвуют в той или иной мере все отделы центральной нервной системы.

Любой рефлекс в организме осуществляется при помощи рефлекторной дуги.

Рефлекторная дуга - это путь, по которому раздражение (сигнал) от рецептора проходит к исполнительному органу. Структурную основу рефлекторной дуги образуют нейронные цепи, состоящие из рецепторных, вставочных и эффекторных нейронов. Именно эти нейроны и их отростки образуют путь, по которому нервные импульсы от рецептора передаются исполнительному органу при осуществлении любого рефлекса.

В периферической нервной системе различают рефлекторные дуги (нейронные цепи)

    соматической нервной системы, иннервирующие скелетную иускулатуру

    вегетативной нервной системы, иннервирующие внутренние органы: сердце, желудок, кишечник, почки, печень и т.д.




Рефлекторная дуга состоит из пяти отделов:

    рецепторов , воспринимающих раздражение и отвечающих на него возбуждением. Рецепторами могут быть окончания длинных отростков центростремительных нервов или различной формы микроскопические тельца из эпителиальных клеток, на которых оканчиваются отростки нейронов. Рецепторы расположены в коже, во всех внутренних органах, скопления рецепторов образуют органы чувств (глаз, ухо и т. д.).

    чувствительного (центростремительного, афферентного) нервного волокна , передающего возбуждение к центру; нейрон, имеющий данное волокно, также называется чувствительным. Тела чувствительных нейронов находятся за пределами центральной нервной системы - в нервных узлах вдоль спинного мозга и возле головного мозга.

    нервного центра , где происходит переключение возбуждения с чувствительных нейронов на двигательные; Центры большинства двигательных рефлексов находятся в спинном мозге. В головном мозге расположены центры сложных рефлексов, таких, как защитный, пищевой, ориентировочный и т. д. В нервном центре происходит синаптическое соединение чувствительного и двигательного нейрона.

    двигательного (центробежного, эфферентного) нервного волокна , несущего возбуждение от центральной нервной системы к рабочему органу; Центробежное волокно - длинный отросток двигательного нейрона. Двигательным называется нейрон, отросток которого подходит к рабочему органу и передает ему сигнал из центра.

    эффектора - рабочего органа, который осуществляет эффект, реакцию в ответ на раздражение рецептора. Эффекторами могут быть мышцы, сокращающиеся при поступлении к ним возбуждения из центра, клетки железы, которые выделяют сок под влиянием нервного возбуждения, или другие органы.

Простейшую рефлекторную дугу можно схематически представить как образованную всего двумя нейронами: рецепторным и эффекторным, между которыми имеется один синапс. Такую рефлекторную дугу называют двунейронной и моносинаптической. Моносинаптические рефлекторные дуги встречаются весьма редко. Примером их может служить дуга миотатического рефлекса.

В большинстве случаев рефлекторные дуги включают не два, а большее число нейронов: рецепторный, один или несколько вставочных и эффекторный. Такие рефлекторные дуги называют многонейронными и полисинаптическими. Примером полисинаптической рефлекторной дуги является рефлекс отдергивания конечности в ответ на болевое раздражение.

Рефлекторная дуга соматической нервной системы на пути от ЦНС к скелетной мышце нигде не прерывается в отличии от рефлекторной дуги вегетативной нервной системы, которая на пути от ЦНС к иннервируемому органу обязательно прерывается с образованием синапса - вегетативного ганглия.

Вегетативные ганглии, в зависимости от локализации, могут быть разделены на три группы:

    позвоночные (вертебральные) ганглии - относятся к симпатической нервной системе. Они расположены по обе стороны позвоночника, образуя два пограничных ствола (их еще называют симпатическими цепочками)

    предпозвоночные (превертебральные) ганглии располагаются на большем расстояни от позвоночника, вместе с тем они находятся в некотором отдалении и от иннервируемых ими органов. К числу превертебральных ганглиев относят ресничный узел, верхний и средний шейный симпатические узлы, солнечное сплетение , верхний и нижний брыжеечные узлы.

    внутриорганные ганглии расположены во внутренних органах: в мышечных стенках сердца, бронхов, средней и нижней трети пищевода, желудка, кишечника, желчного пузыря , мочевого пузыря , а также в железах внешней и внутренней секреции. На клетках этих ганглий прерываются парасимпатические волокна.

Такое различие соматической и вегетативной рефлекторной дуги обусловлено анатомическим строением нервных волокон, составляющих нейронную цепь, и скоростью проведения по ним нервного импульса.

Для осуществления любого рефлекса необходима целостность всех звеньев рефлекторной дуги. Нарушение хотя бы одного из них ведет к исчезновению рефлекса.

Схема реализации рефлекса

В ответ на раздражение рецептора нервная ткань приходит в состояние возбуждения, которое представляет собой нервный процесс, вызывающий или усиливающий деятельность органа. В основе возбуждения лежит изменение концентрации анионов и катионов по обе стороны мембраны отростков нервной клетки, что приводит к изменению электрического потенциала на мембране клетки.

В двухнейронной рефлекторной дуге (первый нейрон - клетка спинно-мозгового ганглия, второй нейрон - двигательный нейрон [мотонейрон] переднего рога спинного мозга) дендрит клетки спинно-мозгового ганглия имеет значительную длину, он следует на периферию в составе чувствительных волокон нервных стволов. Заканчивается дендрит особым приспособлением для восприятия раздражения - рецептором.

Возбуждение от рецептора по нервному волокну центростремительно (центрипетально) передается в спинно-мозговой ганглий. Аксон нейрона спинномозгового ганглия входит в состав заднего (чувствительного) корешка; это волокно доходит до мотонейрона переднего рога и с помощью синапса, в котором передача сигнала происходит при помощи химического вещества - медиатора, устанавливает контакт с телом мотонейрона или с одним из ее дендритов. Аксон этого мотонейрона входит в состав переднего (двигательного) корешка, по которому центробежно (центрифугально) сигнал поступает к исполнительному органу, где соответствующий двигательный нерв заканчивается двигательной бляшкой в мышце. В результате происходит сокращение мышцы.

Возбуждение проводится по нервным волокнам со скоростью от 0,5 до 100 м/с, изолированно и не переходит с одного волокна на другое, чему препятствуют оболочки, покрывающие нервные волокна.

Процесс торможения противоположен возбуждению: он прекращает деятельность, ослабляет или препятствует ее возникновению. Возбуждение в одних центрах нервной системы сопровождается торможением в других: нервные импульсы, поступающие в центральную нервную систему, могут задерживать те или иные рефлексы.

Оба процесса - возбуждение и торможение - взаимосвязаны, что обеспечивает согласованную деятельность органов и всего организма в целом. Например, во время ходьбы чередуется сокращение мышц сгибателей и разгибателей: при возбуждении центра сгибания импульсы следуют к мышцам-сгибателям, одновременно с этим центр разгибания тормозится и не посылает импульсы к мышцам-разгибателям, вследствие чего последние расслабляются, и наоборот.

Взаимосвязь, определяющая процессы возбуждения и торможения, т.е. саморегуляции функций организма, осуществляется при помощи прямых и обратных связей между центральной нервной системой и исполнительным органом. Обратная связь ("обратная афферентация" по П.К.Анохину), т.е. связь между исполнительным органом и центральной нервной системой, подразумевает передачу сигналов с рабочего органа в центральную нервную систему о результатах его работы в каждый данный момент.

Согласно обратной афферентации, после получения исполнительным органом эфферентного импульса и выполнения рабочего эффекта, исполнительный орган сигнализирует центральной нервной системе о выполнении приказа на периферии.

Так, при взятии рукой предмета глаза непрерывно измеряют расстояние между рукой и целью и свою информацию посылают в виде афферентных сигналов в мозг. В мозгу происходит замыкание на эфферентные нейроны, которые передают двигательные импульсы в мышцы руки, производящие необходимые для взятия ею предмета действия. Мышцы одновременно воздействуют на находящиеся в них рецепторы, беспрерывно посылающие мозгу чувствительные сигналы, информирующие о положении руки в каждый данный момент. Такая двусторонняя сигнализация по цепям рефлексов продолжается до тех пор, пока расстояние между кистью руки и предметом не будет равно нулю, т.е. пока рука не возьмет предмет. Следовательно, все время совершается самопроверка работы органа, возможная благодаря механизму "обратной афферентации", который имеет характер замкнутого круга.

Существование такой замкнутой кольцевой, или круговой, цепи рефлексов центральной нервной системы и обеспечивает все сложнейшие коррекции протекающих в организме процессов при любых изменениях внутренних и внешних условий (В.Д. Моисеев, 1960). Без механизмов обратной связи живые организмы не смогли бы разумно приспособиться к окружающей среде.

Следовательно, вместо прежнего представления о том, что в основе строения и функции нервной системы лежит разомкнутая рефлекторная дуга, теория информации и обратной связи ("обратной афферентации") дает новое представление о замкнутой кольцевой цепи рефлексов, о круговой системе эфферентно-афферентной сигнализации. Не разомкнутая дуга, а сомкнутый круг - таково новейшее представление о строении и функции нервной системы.

Полнотекстовый поиск.