Какое вещество является медиатором для холинергических синапсов. Строение синапса и его медиаторы. Виды синапсов. Схема строения и функциональная роль периферической нервной системы. Передача возбуждения в холинергических и адренергических синапсах

На рисунке 10 показана схема синапса, в котором возбуждение передается с помощью ацетилхолина. Ацетилхолин синтезируется в цитоплазме холинергических нервных окончаний из ацетилкоэн-зима А и холина; путем активного транспорта проникает в везику­лы и депонируется в везикулах.

При поступлении нервных импульсов происходит деполяриза­ция мембраны нервного окончания, открываются потенциал-зави­симые кальциевые каналы, ионы Са 2+ поступают в цитоплазму нерв­ного окончания и способствуют взаимодействию белков мембраны везикул с белками пресинаптической мембраны. В результате вези­кулы встраиваются в пресинаптическую мембрану, открываются в сторону синаптической щели и высвобождают ацетилхолин.

Рис. 10. Холинергический синапс.

ХАТ - холинацетилтрансфераза; АцКоА - ацетилкоэнзим А; Ацх - ацетилхолин;

АХЭ - ацетилхолинэстераза.

Ацетилхолин возбуждает рецепторы постсинаптической мемб­раны (холинорецепторы) и расщепляется ферментом ацетилхолин-эстеразой на холин и уксусную кислоту. Холин подвергается обрат­ному захвату нервными окончаниями (обратный нейрональный захват) и вновь участвует в синтезе ацетилхолина.

Известны вещества, действующие на разные этапы холинергической передачи.

Везамикол блокирует вход ацетилхолина в везикулы.

Ионы Mg 2+ и аминогликозиды препятствуют входу Са 2+ в не­рвное окончание через потенциал-зависимые кальциевые каналы (аминогликозиды могут нарушать нервно-мышечную передачу).

Ботулиновый токсин вызывает протеолиз синаптобревина (бе­лок мембраны везикул, который взаимодействует с белками преси­наптической мембраны) и поэтому препятствует встраиванию ве­зикул в пресинаптическую мембрану. Таким образом уменьшается выделение ацетилхолина из холинергического окончания. При бо­тулизме нарушается нервно-мышечная передача; в тяжелых случа­ях возможен паралич дыхательных мышц.

4-Аминопиридин блокирует К + -каналы пресинаптической мем­браны. Это способствует деполяризации мембраны и высвобождению ацетилхолина. 4-Аминопиридин облегчает нервно-мышечную передачу.

Антихолинэстеразные вещества ингибируют ацетилхолинэстеразу и таким образом препятствуют расщеплению ацетилхолина; холи-нергическая передача активируется.

Вещества, стимулирующие холинорецепторы, называют холино-миметиками (от греч. mimesis - подражание; эти вещества в своем действии «подражают» ацетилхолину).

Вещества, которые блокируют холинорецепторы, называют хо-линоблокаторами.

Гемихолиний препятствует обратному нейрональному захвату ацетилхолина.

А. Средства, стимулирующие холинергические синапсы

Из средств, стимулирующих холинергические синапсы, в меди­цинской практике применяют вещества, которые стимулируют хо­линорецепторы - холиномиметики, а также антихолинэстеразные средства (блокируют ацетилхолинэстеразу).

Холиномиметики

Холинорецепторы разных синапсов проявляют неодинаковую чувствительность к фармакологическим веществам. Холинорецеп­торы клеток органов и тканей в области окончаний парасимпати­ческих нервных волокон проявляют повышенную чувствительность к возбуждающему действию мускарина (алкалоид грибов мухомо­ров). Эти холинорецепторы обозначают как М-холинорецепторы (мускариночувствительные холинорецепторы).

Остальные холинорецепторы эфферентной иннервации проявля­ют высокую чувствительность к стимулирующему действию никоти­на (Nicotine; алкалоид табака), поэтому их называют N-холинорецепторами (никотиночувствительные холинорецепторы). Различают 2 типа N-холинорецепторов: N N -холинорецепторы и N м -холиноре-цепторы (рис. 11).

Рис. 11. Локализация хопинорецепторов.

Адр - адреналин; НА - норадреналин; М - М-холинорецепторы; N N - N-холинорецеп-

торы нейронального типа; N M - N-холинорецепторы скелетных мышц.

К N N -холинорецепторам относят ганглионарные N-холинорецеп-торы (N-холинорецепторы нейронов симпатических и парасимпа­тических ганглиев), а также N-холинорецепторы хромаффинных клеток мозгового вещества надпочечников, которые выделяют ад­реналин и норадреналин. Такие же рецепторы находятся в каро-тидных клубочках (расположены в местах деления общих сонных артерий); при их стимуляции рефлекторно возбуждаются дыхатель­ный и сосудодвигательный центры продолговатого мозга.

К N M -холинорецепторам относят N-холинорецепторы скелетных мышц.

Как М-холинорецепторы, так и N-холинорецепторы имеются также в ЦНС.

В соответствии с делением холинорецепторов на М- и N-холино­рецепторы холиномиметики делят на М-холиномиметики, N-холиномиметики и М, N-холиномиметики (стимулируют и М-, и N-хо­линорецепторы).

М-холиномиметики

Различают подтипы М-холинорецепторов - М 1 -, М 2 - и М 3 -холинорецепторы.

В ЦНС, в энтерохромаффиноподобных клетках желудка локали­зованы M 1 -холинорецепторы; в сердце - М 2 -холинорецепторы, в глад­ких мышцах внутренних органов, железах и в эндотелии сосудов - М 3 -холинорецепторы (табл. 1).

При возбуждении М,-холинорецепторов и М 3 -холинорецепто-ров через G -белки активируется фосфолипаза С; образуется ино-зитол-1,4,5-трифосфат, который способствует высвобождению Са 2+

Таблица 1. Локализация подтипов М-холинорецепторов

1 При стимуляции М 3 -холинорецепторов эндотелия кровеносных сосудов высвобождается эндотелиальный релаксирующий фактор - N0, который расширяет кровеносные сосуды.

из саркоплазматического (эндоплазматического) ретикулума. По­вышается уровень внутриклеточного Са 2+ , развиваются возбудитель­ные эффекты.

При стимуляции М 2 -холинорецепторов сердца через G.-белки угнетается аденилатциклаза, снижаются уровень цАМФ, активность протеинкиназы и уровень внутриклеточного Са 2+ . Кроме того, при возбуждении М 2 -холинорецепторов через G о -белки активируются К + -каналы, развивается гиперполяризация клеточной мембраны. Все это ведет к развитию тормозных эффектов.

М 2 -холинорецепторы имеются на окончаниях постганглионар-ных парасимпатических волокон (на пресинаптической мембране); при их возбуждении выделение ацетилхолина уменьшается.

Мускарин стимулирует все подтипы М-холинорецепторов.

Через гематоэнцефалический барьер мускарин не проникает и поэтому на ЦНС существенного влияния не оказывает.

В связи со стимуляцией М 1 -холинорецепторов энтерохромаффиноподобных клеток желудка мускарин увеличивает выделение гистамина, который стимулирует секрецию хлористоводородной кис­лоты париетальными клетками.

В связи со стимуляцией М 2 -холинорецепторов мускарин урежа-ет сокращения сердца (вызывает брадикардию) и затрудняет атри-овентрикулярную проводимость.

В связи со стимуляцией М 3 -холинорецепторов мускарин:

1) суживает зрачки (вызывает сокращение круговой мышцы ра­дужки);

2) вызывает спазм аккомодации (сокращение ресничной мыш­цы ведет к расслаблению цинновой связки; хрусталик становится более выпуклым, глаз устанавливается на ближнюю точку виде­ния);

3) повышает тонус гладких мышц внутренних органов (бронхи, желудочно-кишечный тракт и мочевой пузырь), за исключением сфинктеров;

4) увеличивает секрецию бронхиальных, пищеварительных и потовых желез;

5) снижает тонус кровеносных сосудов (большинство сосудов не получает парасимпатической иннервации, но содержит неиннер-вируемые М 3 -холинорецепторы; стимуляция М 3 -холинорецепторов эндотелия сосудов ведет к высвобождению N0, который расслаб­ляет гладкие мышцы сосудов).

В медицинской практике мускарин не применяется. Фармаколо­гическое действие мускарина может проявляться при отравлении му­хоморами. Отмечаются сужение зрачков глаз, сильное слюнотечение и потоотделение, чувство удушья (усиленная секреция бронхиальных желез и повышение тонуса бронхов), брадикардия, снижение артери­ального давления, спастические боли в животе, рвота, диарея.

В связи с действием других алкалоидов мухоморов, обладающих М-холиноблокирующими свойствами, возможно возбуждение ЦНС: беспокойство, бред, галлюцинации, судороги.

При лечении отравлений мухоморами проводят промывание же­лудка, дают солевое слабительное. Для ослабления действия мускари­на вводят М-холиноблокатор атропин. Если преобладают симптомы возбуждения ЦНС, атропин не используют. Для уменьшения возбуж­дения ЦНС применяют препараты бензодиазепинов (диазепам и др.).

Из М-холиномиметиков в практической медицине используют пилокарпин, ацеклидин и бетанехол.

Пилокарпин - алкалоид растения, произрастающего в Южной Америке. Препарат применяют в основном местно в глазной прак­тике. Пилокарпин суживает зрачки и вызывает спазм аккомодации (увеличивает кривизну хрусталика).

Сужение зрачков (миоз) наступает в связи с тем, что пилокар­пин вызывает сокращение круговой мышцы радужной оболочки (иннервируется парасимпатическими волокнами).

Пилокарпин увеличивает кривизну хрусталика. Это связано с тем, что пилокарпин вызывает сокращение ресничной мышцы, к которой прикрепляется циннова связка, растягивающая хрусталик. При сокращении ресничной мышцы циннова связка расслабляется и хрусталик принимает более выпуклую форму. В связи с увеличе­нием кривизны хрусталика увеличивается его преломляющая спо­собность, глаз устанавливается на ближнюю точку видения (чело­век хорошо видит близкие предметы и плохо - дальние). Такое явление называют спазмом аккомодации. При этом возникает мак-ропсия (видение предметов в увеличенном размере).

В офтальмологии пилокарпин в виде глазных капель, глазной мази, глазных пленок применяют при глаукоме - заболевании, которое проявляется повышением внутриглазного давления и мо­жет вести к нарушениям зрения.

При закрытоуголъной форме глаукомы пилокарпин снижает внут­риглазное давление за счет сужения зрачков и улучшения доступа внут­риглазной жидкости в угол передней камеры глаза (между радужкой и роговицей), в котором расположена гребешковая связка (рис. 12). Че­рез крипты между трабекулами гребешковой связки (фонтановы про­странства) происходит отток внутриглазной жидкости, которая далее поступает в венозный синус склеры - шлеммов канал (трабекуло-каналикулярный отток); повышенное внутриглазное давление снижа­ется. Миоз, вызываемый пилокарпином, сохраняется 4-8 ч. Пило­карпин в виде глазных капель применяют 1-3 раза в день.

При открытоугольной форме глаукомы пилокарпин также может улучшать отток внутриглазной жидкости за счет того, что при сокращении цилиарной мышцы напряжение передается на трабекулы гре­бешковой связки; при этом происходит растяжение трабекулярной сети, фонтановы пространства увеличиваются и улучшается отток внутриглазной жидкости.

Иногда пилокарпин в малых дозах (5-10 мг) назначают внутрь для стимуляции секреции слюнных желез при ксеростомии (су­хость рта), вызванной лучевой терапией опухолей головы или шеи.

Ацеклидин - синтетическое соединение, менее токсичное, чем пилокарпин. Ацеклидин вводят под кожу при послеоперационной атонии кишечника или мочевого пузыря.

Бетанехол - синтетический М-холиномиметик, который приме­няют при послеоперационной атонии кишечника или мочевого пузыря.

Рис. 12. Строение глаза.

N-холиномиметики

N-холиномиметиками называют вещества, возбуждающие N-xo-линорецепторы (никотиночувствительные рецепторы).

N-холинорецепторы непосредственно связаны с Nа + -каналами клеточной мембраны. При возбуждении N-холинорецепторов Na + -каналы открываются, вход Na + ведет к деполяризации клеточной мембраны и возбудительным эффектам.

N N -холинорецепторы находятся в нейронах симпатических и парасимпатических ганглиев, в хромаффинных клетках мозгового вещества надпочечников, в каротидных клубочках. Кроме того, N N -холинорецепторы обнаружены в ЦНС, в частности, в клетках Рен-шоу, которые оказывают тормозное влияние на мотонейроны спин­ного мозга.

N м -холинорецепторы локализованы в нервно-мышечных синап­сах (в концевых пластинках скелетных мышц); при их стимуляции происходит сокращение скелетных мышц.

Никотин - алкалоид из листьев табака. Бесцветная жидкость, ко­торая на воздухе приобретает коричневый цвет. Хорошо всасывается через слизистую оболочку полости рта, дыхательных путей, через кожу. Легко проникает через гематоэнцефалический барьер. Боль­шая часть никотина (80-90%) метаболизируется в печени. Никотин и его метаболиты выводятся в основном почками. Период полуэли­минации (t l /2) 1-1,5 ч. Никотин выделяется молочными железами.

Никотин стимулирует в основном N N -холинорецепторы и в мень­шей степени М м -холинорецепторы. В действии никотина на си­напсы, имеющие на постсинаптической мембране N-холинорецеп­торы, по мере увеличения дозы выделяют 3 фазы: 1) возбуждение, 2) деполяризационный блок (стойкая деполяризация постсинаптической мембраны), 3) недеполяризационный блок (связан с десен-ситизацией N-холинорецепторов). При курении проявляется 1-я фаза действия никотина.

Никотин стимулирует нейроны симпатических и парасимпати­ческих ганглиев, хромаффинные клетки надпочечников, каротидные клубочки.

В связи с тем, что никотин одновременно стимулирует на уровне ганглиев симпатическую и парасимпатическую иннервацию, некото­рые эффекты никотина непостоянны. Так, обычно никотин вызывает миоз, тахикардию, но возможны и противоположные эффекты (мидриаз, брадикардия). Никотин обычно стимулирует моторику желу­дочно-кишечного тракта, секрецию слюнных и бронхиальных желез.

Постоянным эффектом никотина является его сосудосуживаю­щее действие (большинство сосудов получает только симпатичес­кую иннервацию). Никотин суживает сосуды потому что: 1)стиму-лирует симпатические ганглии, 2) увеличивает выделение адреналина и норадреналина из хромаффинных клеток надпочечников, 3) сти­мулирует N-холинорецепторы каротидных клубочков (рефлекторно активируется сосудодвигательный центр). В связи с сужением сосудов никотин повышает артериальное давление.

При действии никотина на ЦНС регистрируют не только возбуди­тельные, но и тормозные эффекты. В частности, стимулируя N N -xo-линорецепторы клеток Реншоу, никотин может угнетать моносинап-тические рефлексы спинного мозга (например, коленный рефлекс). Угнетающее действие никотина, связанное с возбуждением тормоз­ных клеток, возможно и в высших отделах ЦНС.

N-холинорецепторы в синапсах ЦНС могут быть локализованы как на постсинаптических, так и на пресинаптических мембранах. Действуя на пресинаптические N-холинорецепторы, никотин сти­мулирует высвобождение медиаторов ЦНС - дофамина, норадре­налина, ацетилхолина, серотонина, β -эндорфина, а также секре­цию некоторых гормонов (АКТГ, антидиуретический гормон).

У курильщиков никотин вызывает повышение настроения, при­ятное ощущение успокоения или активизации (зависит от типа выс­шей нервной деятельности). Повышает обучаемость, концентрацию внимания, бдительность, Снижает стрессовые реакции, проявле­ния депрессии. Понижает аппетит и массу тела.

Эйфорию, вызываемую никотином, связывают с повышенным выделением дофамина, антидепрессивное действие и снижение ап­петита - с выделением серотонина и норадреналина.

Курение. В сигарете содержится 6-11 мг никотина (смертельная доза никотина для человека около 60 мг). За время курения сигареты в организм курильщика попадает 1-3 мг никотина. Токсическое действие никотина умеряется его быстрой элиминацией. Кроме того, к никотину быстро развивается привыкание (толерантность).

Еще больший вред при курении приносят другие вещества (око­ло 500), которые содержатся в табачном дыме и обладают раздра­жающими и канцерогенными свойствами. Большинство курильщи­ков страдают воспалительными заболеваниями органов дыхания (ларингит, трахеит, бронхит). Рак легких у курильщиков бывает значительно чаще, чем у некурящих. Курение способствует разви­тию атеросклероза (никотин повышает в плазме крови уровень ЛПНП и снижает уровень ЛПВП), возникновению тромбозов, ос-теопорозу (особенно у женщин старше 40 лет).

Курение во время беременности приводит к снижению массы плода, повышению послеродовой смертности детей, отставанию детей в физическом и психическом развитии.

К никотину развивается психическая зависимость; при прекраще­нии курения курильщики испытывают тягостные ощущения: ухудше­ние настроения, нервозность, беспокойство, напряжение, раздражи­тельность, агрессивность, снижение концентрации внимания, снижение познавательных способностей, депрессию, повышение аппетита и массы тела. Наиболее выражено большинство этих симптомов через 24-48 ч после прекращения курения. Затем они уменьшаются при­мерно в течение 2 нед. Многие курильщики, понимая вред курения, тем не менее не могут избавиться от этой вредной привычки.

Для того, чтобы уменьшить неприятные ощущения при прекра­щении курения, рекомендуют: 1) жевательную резинку, содержа­щую никотин (2 или 4 мг), 2) трансдермальную терапевтическую систему с никотином - специальный пластырь, равномерно выде­ляющий небольшие количества никотина в течение 24 ч (наклеива­ется на здоровые участки кожи), 3) мунштук, содержащий карт­ридж с никотином и ментолом.

Указанные препараты никотина пробуют использовать в качестве лекарственных средств при болезни Альцгеймера, болезни Паркинсо-на, язвенном колите, синдроме Туретта (моторные и вокальные тики у детей) и некоторых других патологических состояниях.

Острое отравление никотином проявляется такими симптомами, как тошнота, рвота, диарея, боли в животе, головная боль, голово­кружение, потливость, нарушения зрения и слуха, дезориентация. В тяжелых случаях развивается коматозное состояние, нарушается дыхание, падает артериальное давление. В качестве лечебных мероп­риятий проводят промывание желудка, назначают внутрь активированный уголь, принимают меры борьбы с сосудистым коллапсом и нарушениями дыхания.

Цитизин (алкалоид термопсиса) и лобелии (алкалоид лобелии) сходны по строению и действию с никотином, но менее активны и токсичны.

Цитизин в составе таблеток «Табекс» и лобелии в составе табле­ток «Лобесил» применяют для облегчения отвыкания от курения.

Цититон (0,15% раствор цитизина) и раствор лобелина иногда вво­дят внутривенно в качестве рефлекторных стимуляторов дыхания.

M.N-холиномиметики

К М,N-холиномиметикам следует отнести прежде всего ацетилхолин - медиатор, с помощью которого передается возбуждение во всех холинергических синапсах. Выпускается лекарственный пре­парат ацетилхолина. В клинике препарат используют редко из-за кратковременности действия (несколько минут; препарат быстро инактивируется холинэстеразой плазмы крови и ацетилхолинэсте-разой). В то же время ацетилхолин - излюбленный препарат для экспериментальной работы; кратковременность действия позволя­ет вводить препарат в течение исследования многократно.

Ацетилхолин возбуждает одновременно М- и N-холинорецепто-ры. Преобладает действие ацетилхолина на М-холинорецепторы. Поэтому обычно проявляются «мускариноподобные» эффекты аце­тилхолина. Ацетилхолин оказывает выраженное влияние на сер­дечно-сосудистую систему:

1) урежает сокращения сердца (отрицательное хронотропное дей­ствие);

2) ослабляет сокращения предсердий и в меньшей степени - же­лудочков (отрицательное инотропное действие);

3) затрудняет проведение импульсов в атриовентрикулярном узле (отрицательное дромотропное действие);

4) расширяет кровеносные сосуды.

Большинство кровеносных сосудов не получает парасимпати­ческой иннервации, но содержит в эндотелии и в гладких мышцах неиннервируемые М 3 -холинорецепторы. При возбуждении ацетил-холином М 3 -холинорецепторов эндотелия из эндотелиальных кле­ток высвобождается эндотелиальный релаксирующий фактор - N0, который вызывает расширение кровеносных сосудов (при удалении эндотелия ацетилхолин суживает сосуды - стимуляция М 3 -холинорецепторов гладких мышц сосудов). Кроме того, аце­тилхолин уменьшает сосудосуживающее влияние симпатической иннервации (стимулирует М 2 -холинорецепторы на окончаниях симпатических адренергических волокон и за счет этого умень­шает выделение норадреналина).

В связи с брадикардией и расширением артерий ацетилхолин в эксперименте при внутривенном введении выражение снижает артериальное давление. Но если блокировать М-холинорецепторы атропином, большие дозы ацетилхолина вызывают не снижение, а повышение артериального давления (рис. 13). На фоне блокады М-холинорецепторов проявляется «никотиноподобное» действие аце­тилхолина: возбуждение симпатических ганглиев и хромаффинных клеток надпочечников (высвобождение адреналина и норадренали­на, которые суживают кровеносные сосуды).

Ацетилхолин повышает тонус бронхов, стимулирует моторику кишечника, повышает тонус детрузора мочевого пузыря, увеличи­вает секрецию бронхиальных, пищеварительных и потовых желез.

Путем некоторого изменения структуры ацетилхолина был син­тезирован карбахолин, который не разрушается ацетилхолинэсте-разой и действует более продолжительно. Растворы карбахолина иногда используют в виде глазных капель при глаукоме.

  • 6. М-холиномиметические средства.
  • 7. Н-холиномиметические средства. Применение никотиномиметиков для борьбы с табакокурением.
  • 8. М-холиноблокирующие средства.
  • 9. Ганглиоблокирующие средства.
  • 11. Адреномиметические средства.
  • 14. Средства для общей анестезии. Определение. Детерминанты глубины, скорости развития и выхода из наркоза. Требования к идеальному наркотическому средству.
  • 15. Средства для ингаляционного наркоза.
  • 16. Средства для неингаляционного наркоза.
  • 17. Спирт этиловый. Острое и хроническое отравление. Лечение.
  • 18. Седативно-гипнотические средства. Острое отравление и меры помощи.
  • 19. Общие представления о проблеме боли и обезболивании. Средства, используемые при нейропатических болевых синдромах.
  • 20. Наркотические анальгетики. Острое и хроническое отравление. Принципы и средства лечения.
  • 21. Ненаркотические анальгетики и антипиретики.
  • 22. Противоэпилептические средства.
  • 23. Средства, эффективные при эпилептическом статусе и других судорожных синдромах.
  • 24. Противопаркинсонические средства и средства для лечения спастичности.
  • 32. Средства для предупреждения и купирования бронхоспазма.
  • 33. Отхаркивающие и муколитические средства.
  • 34. Противокашлевые средства.
  • 35. Средства, применяемые при отеке легких.
  • 36. Средства, применяемые при сердечной недостаточности (общая характеристика) Негликозидные кардиотонические средства.
  • 37. Сердечные гликозиды. Интоксикация сердечными гликозидами. Меры помощи.
  • 38. Противоаритмические средства.
  • 39. Антиангинальные средства.
  • 40. Основные принципы лекарственной терапии инфаркта миокарда.
  • 41. Антигипертензивные симпатоплегические и вазорелаксирующие средства.
  • I. Средства, влияющие на аппетит
  • II. Средства при снижении секреции желудка
  • I. Производные сульфонилмочевины
  • 70. Противомикробные средства. Общая характеристика. Основные термины и понятия в области химиотерапии инфекций.
  • 71. Антисептики и дезинфицирующие средства. Общая характеристика. Отличие их от химиотерапевтических средств.
  • 72. Антисептики – соединения металлов, галогенсодержащие вещества. Окислители. Красители.
  • 73. Антисептики алифатического, ароматического и нитрофуранового ряда. Детергенты. Кислоты и щелочи. Полигуанидины.
  • 74. Основные принципы химиотерапии. Принципы классификации антибиотиков.
  • 75. Пенициллины.
  • 76. Цефалоспорины.
  • 77. Карбапенемы и монобактамы
  • 78. Макролиды и азалиды.
  • 79. Тетрациклины и амфениколы.
  • 80. Аминогликозиды.
  • 81. Антибиотики группы линкозамидов. Фузидиевая кислота. Оксазолидиноны.
  • 82. Антибиотики гликопептиды и полипептиды.
  • 83. Побочное действие антибиотиков.
  • 84. Комбинированная антибиотикотерапия. Рациональные комбинации.
  • 85. Сульфаниламидные препараты.
  • 86. Производные нитрофурана, оксихинолина, хинолона, фторхинолона, нитроимидазола.
  • 87. Противотуберкулезные средства.
  • 88. Противоспирохетозные и противовирусные средства.
  • 89. Противомалярийные и противоамебные средства.
  • 90. Средства, применяемые при жиардиазе, трихомониазе, токсоплазмозе, лейшманиозе, пневмоцистозе.
  • 91. Противомикозные средства.
  • I. Средства, применяемые при лечении заболеваний, вызванных патогенными грибами
  • II. Средства, применяемые при лечении заболеваний, вызванных условно-патогенными грибами (например, при кандидамикозе)
  • 92. Антигельминтные средства.
  • 93. Противобластомные средства.
  • 94. Средства, применяемые при чесотке и педикулёзе.
  • Частная фармакология

    1. Схема строения и функциональная роль периферической нервной системы. Передача возбуждения в холинергических и адренергических синапсах.

    эффекты, вызванные повышением активности симпатического отдела

    автономной нервной системы:

    Радужка – сокращение радиальной мышцы ( 1 -Ар)

    Цилиарная мышца – расслабляется (-Ар)

    2) сердце:

    Синоатриальный узел, эктопические пейсмейкер – ускорение ( 1 -Ар)

    Сократимость – повышается ( 1 -Ар)

    3) ГМК сосудов:

    Кожа, сосуды внутренних органов – сокращаются (-Ар)

    Сосуды скелетных мышц – расслабляются ( 2 -Ар)

    4) бронхиолярные ГМК: расслабляются ( 2 -Ар)

    ГМК стенок – расслабляются ( 2 ,  2 -Ар)

    ГМК сфинктеров – сокращаются ( 1 -Ар)

    Мышечное сплетение – угнетается (-Ар)

    6) ГМК мочеполовой системы:

    Стенки мочевого пузыря – расслабляются ( 2 -Ар)

    Сфинктер – сокращается ( 1 -Ар)

    Матка при беременности – расслабляется ( 2 -Ар) или сокращается (-Ар)

    Пенис, семенные пузырьки – эякуляция (-Ар)

    Пиломоторные ГМК - сокращаются (-Ар)

    Потовые железы: терморегуляторные – активация (М-Хр), апокриновые – активация (-Ар)

    8) метаболические функции:

    Печень: глюконеогенез и глюкогенолез (/ 2 -Ар)

    Жировые клетки: липолиз ( 3 -Ар)

    Почки: выделение ренина ( 1 -Ар)

    эффекты, обусловленные повышением тонуса парасимпатического отдела

    автономной нервной системы.

    Радужка – сокращение циркулярной мышцы (М 3 -Хр)

    Цилиарная мышца – сокращается (М 3 -Хр)

    2) сердце:

    Синоатриальный узел – замедляется (М 2 -Хр)

    Сократимость – замедляется (М 2 -Хр)

    3) ГМК сосудов:

    Эндотелий – выделение эндотелиального релаксирующего фактора NO (М 3 -Хр)

    4) бронхиолярные ГМК: сокращаются (М 3 -Хр)

    ГМК стенок – сокращаются (М 3 -Хр)

    ГМК сфинктеров – расслабляются (М 3 -Хр)

    Секреция – повышается (М 3 -Хр)

    Мышечное сплетение – активируется (М 1 -Хр)

    6) ГМК мочеполовой системы:

    Стенки мочевого пузыря – сокращаются (М 3 -Хр)

    Сфинктер – расслабляются (М 3 -Хр)

    Матка при беременности –сокращается (М 3 -Хр)

    Пенис, семенные пузырьки – эрекция (М-Хр)

    строение холинергического синапса.

    В холинэргических синапсах передача возбуждения осуществляется посредством ацетилхолина. АцХ синтезируется в цитоплазме окончаний холинэргических нейронов. Он образуется из холина и АцКоА при участии цитоплазматического энзима холинацетилазы. Депонируется он в синаптических пузырьках (везикулах). Нервные импульсы вызывают высвобождение АцХ в синаптическую щель, после чего он взаимодействует с холинорецепторами. Структура ХР не установлена. По имеющимся данным, ХР имеет 5 белковых субъединиц (,,,), окружающих ионный (натриевый) канал и проходящий через всю толщу липидной мембраны. АцХ взаимодействует с -субъединицами, что приводит к открыванию ионного канала и деполяризации постсинаптической мембраны.

    ХР бывают: мускариночувствительные и никотиночувствительные. МХР расположены в постсинаптической мембране клеток эффекторных органов у окончаний постганглионарных парасимпатических волокон, а также на нейронах вегетативных ганглиев и в ЦНС (в коре, ретикулярной формации). Есть м 1 -ХР (в вегетативных ганглиях, ЦНС), м 2 -ХР (сердце), м 3 -ХР (гладкие мышцы, экзокринные железы). НХР находятся в постсинаптической мембране ганглионарных нейронов у окончаний всех преганглионарных волокон, мозговом веществе надпочечников, синокаротидной зоне, концевых пластинках скелетных мышц, ЦНС. Эффекты возбуждения ПНС: сердце (брадикардия, снижение сократимости, возбудимости, проводимости, понижение АД); бронхи (бронхоспазм, повышение секреции бронхиальных желёз); глаз (сужение зрачка, понижение внутриглазного давления, спазм аккомодации); сфинктеры (понижение тонуса); гладкие мышцы (повышение тонуса и перистальтики ЖКТ, повышение тонуса мочевого пузыря); железы (повышение секреции желёз ЖКТ, гиперсаливация слюнных желёз). Эффекты возбуждения СНС: сердце (тахикардия, повышение сократимости, возбудимости, повышение АД); бронхи (расширение, понижение секреции желёз); глаз (расширение зрачка, повышение внутриглазного давления, паралич аккомодации); гладкие мышцы (снижение тонуса, перистальтики ЖКТ); сфинктеры (повышение тонуса); железы (понижение секреции).

    Классификация ХЭ средств:

    Холиномиметики делятся на М- и Н- (бывают: 1.прямого (ацетилхолин, карбохолин) и 2.непрямого (обратимого действия (прозерин, галантамин,изостегмин, оксазил) и необратимого действия) действия ; М (пилокарпина гидрохлорид, ацеклидин); Н (никотин, лобелин, цититон, анабазин).

    Холиноблокаторы делятся на М- и Н- (1.центрального (амизил, циклодол, тропацин) и 2.периферического (спазмолитин, апрофен) действия ), М (атропин, платифиллин, скопаламин, метацин, гастрозепин, тровентол), Н (1.ганглиоблокаторы (бензогексоний, арфонад, пентамин, гигроний; 2.миорелаксанты ; 3.курареподобные средства (деполяризующие (дитилин); антидеполяризующие (тубокурарина гидрохлорид, панкуроний, пиперкуроний); смешанного действия (диоксоний)).

    строение адренергического синапса.

    В адренергических синапсах передача возбуждения осуществляется посредством норадреналина. В пределах периферической иннервации норадреналин принимает участие в передаче импульсов с адренергических волокон на эффекторные клетки. Адренэргические аксоны, подходя к эффектору, разветвляются на тонкую сеть волокон с варикозными утолщениями, выполняющими функцию нервных окончаний, которые участвуют в образовании синаптических контактов с эффекторными клетками. В варикозных утолщениях находятся везикулы (пузырьки), содержащие медиатор норадреналин. Биосинтез норадреналина осуществляется в адренергических нейронах из тирозина с участием ряда энзимов. Образование ДОФА и дофамина происходит в цитоплазме нейронов, а норадреналина в везикулах. В ответ на нервные импульсы происходит высвобождение норадреналина в синаптическую щель и последующее взаимодействие его с адренорецепторами постсинаптической мембраны.

    Различают  и -адренорецепторы.

    Сосуды кожи, почек, кишечника ( 1 и  2) - при их стимуляции - сокращение мышц, сужение сосудов.

    Сосуды скелетных мышц, печени, коронарные сосуды ( 2) - расширение.

    Вены ( 1) - сужение.

    Сердце ( 1) - повышение ЧСС, силы сердечных сокращений, повышение проводимости, возбудимости миокарда, повышение потребности миокарда в кислороде).

    Бронхи ( 2) - расширение.

    Глаз (радиальная мышца) ( 1) - мидриаз, снижение ВГД.

    Кишечник и мускулатура ( 1) - расслабление, снижение тонуса, перистальтики.

    Сфинктеры кишечника ( 1) - сокращение сфинктеров.

    Матка (миометрий) ( 2) - снижение тонуса.

    Шейка матки ( 1) - сокращение.

    Простата, сфинктеры мочевого пузыря, простатическая часть уретры ( 1) - повышение тонуса, эякуляция.

    Почки (юкстагломерулярный аппарат) ( 1 и  2) - повышение секреции ренина.

    Капсула селезёнки ( 1) - сокращение.

    Тромбоциты ( 2 и  2) - соответственно повышение и понижении агрегации.

    -клетки поджелудочной железы ( 1) - понижение секреции инсулина.

    Депо гликогена ( 2) - гликогенолиз.

    Жировые депо ( 3) - липолиз и термогенез в жировой ткани.

    Классификация средств, влияющих на адренэргические синапсы.

    Делятся на адреномиметики и адреноблокаторы.

    Адреномиметики бывают прямого и непрямого действия. Прямого действия бывают:  (адреналин - все виды рецепторов, норадреналин - все, кроме  2); (мезатон -  1 , нафтизин, глазолин -  2); (изодрин - 1 , 2 , добутамин -  1 , тербутамин -  2 , сальбутамол -  2). Непрямого действия, или симпатомиметики (фенамин, эфедрина гидрохлорид).

    Адреноблокаторы бывают: непрямого и прямого действия. Непрямого действия или симпатолитики (резерпин, октадин, орнид). Прямого действия:  (лабетолол - 1 , 1 , 2); (фентоламин -  1 , 2 , тропафен - 1 , 2 , празозин -  1); (анаприлин -  1 , 2 , окспренолол -  1 , 2 , атенолол -  1).

    Передача возбуждения по нервным волокнам осуществляется в виде нервных импульсов (распространяющихся по мембране нервного волокна потенциалов действия). В местах контакта окончаний нервного волокна с другой клеткой передача возбуждения осуществляется с помощью медиатора.

    Место контакта нервной клетки с другой клеткой, где происходит передача нервных импульсов, называется нервным синапсом.

    Передача возбуждения в синапсе происходит следующим образом. Нервный импульс вызывает деполяризацию пресинаптической мембраны В результате из нервного окончания в синаптическую щель выделяется медиатор, который взаимодействует с рецепторами на постсинаптической мембране и вызывает их возбуждение. Активация рецепторов приводит к последовательной перестройке внутриклеточных процессов, что в конечном итоге приводит к изменению функций клетки. Характер этих изменений зависит от типа рецепторов. После того, как передача возбуждения произошла, взаимодействие медиатора с рецептором прекращается, медиатор утилизируется тем или иным способом, рецептор реактивируется и синапс возвращается в исходное состояние и процесс передачи импульса может повториться вновь.

    В качестве медиаторов в эфферентном отделе периферической нервной системы используется ацетилхолин и норадреналин.

    Ацетилхолин синтезируется в нейронах из ацетил КоА и холина при участии холинацетилтрансферазы и хранится в специальных везикулах. Выделение медиатора происходит, когда потенциал действия открывает потенциалзависимые Са 2+ -каналы. Возникшее увеличение внутриклеточного содержания Са 2+ вызывает экзоцитоз ацетилхолина. Действие ацетилхолина‒медиатора прекращает фермент ацетилхолинэстераза, вызывающий его гидролиз.

    Ацетилхолин используется в качестве медиатора в синапсах:

    · вегетативных ганглиев,

    · в области окончаний постганглионарных нервных волокон парасимпатического отдела и некоторых волокон симпатического отдела вегетативной нервной системы,

    · в области окончаний преганглионарных симпатических нервных волокон, иннервирующих хромаффинную ткань надпочечников,

    · в синапсах ЦНС.

    · По типу холинергических синапсов устроены баро- и хеморецепторы синокаротидной зоны.

    Норадреналин синтезируется из тирозина. Вначале образуется диоксифенилаланин (ДОФА), затем дофамин и после этого норадреналин. Выделение норадреналина под влиянием нервного импульса, так же как и ацетилхолина, происходит когда открываются потенциалзависимые Са 2+ -каналы и повышается внутриклеточное содержание Са 2+ . Взаимодействие норадреналина с рецепторами прекращается вследствие снижения его концентрации в синаптической щели. Большая часть норадреналина-медиатора при этом с помощью активного транспорта захватывается обратно в нервное окончание и везикулируется. При этом он может частично разрушаться под влиянием фермента моноаминоксидазы (МАО). Оставшаяся часть захватывается клетками исполнительных органов, где разрушается под влиянием фермента катехол-орто-метил трансферазы (КОМТ).

    Норадреналин используется в качестве медиатора в синапсах:

    · в области окончаний симпатических постганглионарных нервных волокон

    Часть симпатических нервных волокон (иннервирующих сосуды почек) использует в качестве медиатора дофамин. Процесс передачи импульсов с помощью дофамина в общих чертах совпадает с таковым норадреналина.

    Синтез, хранение, выделение, взаимодействие медиатора с рецепторами и его утилизация представляют потенциальные мишени для фармакологической модификации нейромедиаторных процессов.

    Эффекты возбуждения симпатических и парасимпатических нервов:

    Орган Симпатические нервы Парасимпатические нервы
    Глаз

    · радужка (зрачок)

    · цилиарное тело

    · секреция водянистой влаги

    секреции влаги

     секреции влаги

    циклоспазм

     отток влаги

    Миокард

    · проводящий

    · рабочий

    автоматизм, возбудимость, проводимость

     сократимость

    автоматизм, возбудимость, проводимость

    Сосуды

    · кожные, висцеральные

    · скелетных мышц

    · эндотелий

    констрикция

    дилятация

    синтез NO, дилятация

    Бронхиолы b 2 расслабление М 3 сокращение
    Желудочно-кишечный тракт

    · гладкие мышцы

    · сфинктеры

    · секреция желез

    расслабление

    сокращение

    сокращение

    расслабление

    повышение

    Мочеполовая система

    · гладкие мышцы

    · сфинктеры

    · сосуды почек

    · гениталии мужчин

    расслабление

    сокращение

    вазодилятация

    эякуляция

    сокращение

    расслабление

    эрекция, за счет NO

    Кожа / потовые железы

    · терморегуляторные

    · апокриновые

    активация

    активация

    Метаболические функции

    · жировая ткань

    · b-клетки

    гликогенолиз

    секреция ренина

    секреции инсулина

     секреции инсулина

    Миометрий a 1 сокращение

    расслабление

    М 3 сокращение

    Еще по теме Холинергическая и адренергическая передача: структура синапсов, синтез и высвобождение медиаторов. Эффекты возбуждения симпатических и парасимпатических нервов.:

    1. Средства, действующие в области холинергических синапсов (холинергические средства)

    Автономной нервной системы.

    Эффекты, обусловленные повышением тонуса парасимпатического отдела

    Радужка – сокращение циркулярной мышцы (М 3 -Хр)

    Цилиарная мышца – сокращается (М 3 -Хр)

    2) сердце:

    Синоатриальный узел – замедляется (М 2 -Хр)

    Сократимость – замедляется (М 2 -Хр)

    3) ГМК сосудов:

    Эндотелий – выделение эндотелиального релаксирующего фактора NO (М 3 -Хр)

    4) бронхиолярные ГМК: сокращаются (М 3 -Хр)

    ГМК стенок – сокращаются (М 3 -Хр)

    ГМК сфинктеров – расслабляются (М 3 -Хр)

    Секреция – повышается (М 3 -Хр)

    Мышечное сплетение – активируется (М 1 -Хр)

    6) ГМК мочеполовой системы:

    Стенки мочевого пузыря – сокращаются (М 3 -Хр)

    Сфинктер – расслабляются (М 3 -Хр)

    Матка при беременности –сокращается (М 3 -Хр)

    Пенис, семенные пузырьки – эрекция (М-Хр)

    В холинэргических синапсах передача возбуждения осуществляется посредством ацетилхолина. АцХ синтезируется в цитоплазме окончаний холинэргических нейронов. Он образуется из холина и АцКоА при участии цитоплазматического энзима холинацетилазы. Депонируется он в синаптических пузырьках (везикулах). Нервные импульсы вызывают высвобождение АцХ в синаптическую щель, после чего он взаимодействует с холинорецепторами. Структура ХР не установлена. По имеющимся данным, ХР имеет 5 белковых субъединиц (a,b,g,d), окружающих ионный (натриевый) канал и проходящий через всю толщу липидной мембраны. АцХ взаимодействует с a-субъединицами, что приводит к открыванию ионного канала и деполяризации постсинаптической мембраны.

    ХР бывают: мускариночувствительные и никотиночувствительные. МХР расположены в постсинаптической мембране клеток эффекторных органов у окончаний постганглионарных парасимпатических волокон, а также на нейронах вегетативных ганглиев и в ЦНС (в коре, ретикулярной формации). Есть м 1 -ХР (в вегетативных ганглиях, ЦНС), м 2 -ХР (сердце), м 3 -ХР (гладкие мышцы, экзокринные железы). НХР находятся в постсинаптической мембране ганглионарных нейронов у окончаний всех преганглионарных волокон, мозговом веществе надпочечников, синокаротидной зоне, концевых пластинках скелетных мышц, ЦНС. Эффекты возбуждения ПНС: сердце (брадикардия, снижение сократимости, возбудимости, проводимости, понижение АД); бронхи (бронхоспазм, повышение секреции бронхиальных желёз); глаз (сужение зрачка, понижение внутриглазного давления, спазм аккомодации); сфинктеры (понижение тонуса); гладкие мышцы (повышение тонуса и перистальтики ЖКТ, повышение тонуса мочевого пузыря); железы (повышение секреции желёз ЖКТ, гиперсаливация слюнных желёз). Эффекты возбуждения СНС: сердце (тахикардия, повышение сократимости, возбудимости, повышение АД); бронхи (расширение, понижение секреции желёз); глаз (расширение зрачка, повышение внутриглазного давления, паралич аккомодации); гладкие мышцы (снижение тонуса, перистальтики ЖКТ); сфинктеры (повышение тонуса); железы (понижение секреции).



    Классификация ХЭ средств:

    Холиномиметики делятся на М- и Н- (бывают: 1.прямого (ацетилхолин, карбохолин) и 2.непрямого (обратимого действия (прозерин, галантамин,изостегмин, оксазил) и необратимого действия) действия ; М (пилокарпина гидрохлорид, ацеклидин); Н (никотин, лобелин, цититон, анабазин).

    Холиноблокаторы делятся на М- и Н- (1.центрального (амизил, циклодол, тропацин) и 2.периферического (спазмолитин, апрофен) действия ), М (атропин, платифиллин, скопаламин, метацин, гастрозепин, тровентол), Н (1.ганглиоблокаторы (бензогексоний, арфонад, пентамин, гигроний; 2.миорелаксанты ; 3.курареподобные средства (деполяризующие (дитилин); антидеполяризующие (тубокурарина гидрохлорид, панкуроний, пиперкуроний); смешанного действия (диоксоний)).

    Атропин блокирует М 2 -холинорецепторы сердца и, устраняя тормозное влияние блуждающего нерва (вагуса) на синоатриальный узел, повышает его автоматизм, - возникает тахикардия. Так как атропин стимулирует центры блуждающего нерва в ЦНС, тахикардии может предшествовать кратковременная брадикардия (брадикардия возникает в основном при применении низких доз атропина). Уменьшение тормозного влияния вагуса на атриовентрикулярный узел приводит к повышению атриовентрикулярной проводимости.

    Блокируя М 3 -холинорецепторы гладкомышечных клеток, атропин устраняет стимулирующее влияние парасимпатической иннервации на гладкие мышцы бронхов, желудка, кишечника, мочевого пузыря, желчевыводящих протоков и снижает их тонус и моторику ЖКТ. Атропин блокирует М 3 -холинорецепторы экзокринных желез (желез внешней секреции) и уменьшает секрецию бронхиальных, слюнных желез, желез желудка и поджелудочной железы, слезных, носоглоточных и потовых желез.

    Атропин блокирует М 1 -холинорецепторы энтерохромаффиноподобных клеток желудка и таким образом уменьшает выделение гистамина, который стимулирует секрецию хлористоводородной кислоты париетальными клетками желудка. В результате секреция хлористоводородной кислоты снижается.

    Атропин блокирует неиннервируемые М 3 -холинорецепторы эндотелия сосудов, но при этом не вызывает изменения тонуса сосудов.

    Однако он препятствует взаимодействию рецепторов с М-холиномиметическими веществами и устраняет их сосудорасширяющее действие.

    Многие из этих эффектов атропина (и других М-холиноблокаторов) используют в медицинской практике.

    Способность атропина вызывать расширение зрачков используют в офтальмологии для исследования глазного дна, а также для лечения воспалительных заболеваний (ириты, иридоциклиты) и травм глаза, так как при расширении зрачка снижается опасность образования спаек между радужкой и капсулой хрусталика. Вызываемый атропином паралич аккомодации (циклоплегия) позволяет использовать его для определения истинной рефракции глаза (определение преломляющей способности хрусталика). После инсталляции в глаз 0,5-1% раствора атропина максимальное расширение зрачка наблюдают через 30-40 мин, паралич аккомодации - через 1-3 ч. Действие атропина на величину зрачков и аккомодацию сохраняется в течение 10-14 дней. Продолжительное расширение зрачков - преимущество атропина при лечении воспалительных заболеваний глаза. При длительном применении возможны местное раздражение, гиперемия и развитие конъюнктивита. Системные реакции при закапывании атропина в глаз (гипертермия, сухость во рту) чаще возникают у маленьких детей и лиц преклонного возраста.