Нарушение энергетического обеспечения процессов протекающих в клетке. Расстройства энергетического обеспечения клетки. Профилактические и лечебные мероприятия

На уровне клетки повреждающие факторы “включают” несколько патогенетических звеньев. К их числу относят:

    расстройство процессов энергетического обеспечения клеток;

    повреждение мембран и ферментных систем;

    дисбаланс ионов и жидкости;

    нарушение генетической программы и/или ее реализации;

    расстройство механизмов регуляции функции клеток.

1. Нарушение энергетического обеспечения процессов, протекающих в клетках, часто является инициальным и ведущим механизмом их альтерации. Энергоснабжение может расстраиваться на этапах синтеза АТФ, транспорта, а также утилизации его энергии.

Синтез АТФ может быть нарушен в результате дефицита кислорода и/или субстратов метаболизма, снижения активности ферментов тканевого дыхания и гликолиза, повреждения и разрушения митохондрий, в которых осуществляются реакции цикла Кребса и перенос электронов к молекулярному кислороду, сопряженный с фосфорилированием АДФ.

Известно, что доставка энергии АТФ от мест ее синтеза – из митохондрий и гиалоплазмы – к эффекторным структурам (миофибриллам, мембранным ионным “насосам” и др.) осуществляется с помощью ферментных систем: АДФ – АТФ – транслоказы (адениннуклеотидтрансферазы) и креатинфосфокиназы (КФК). Адениннуклеотидтрансфераза обеспечивает транспорт энергии макроэргической фосфатной связи АТФ из матрикса митохондрий через их внутреннюю мембрану, а КФК переносит ее далее на креатин с образованием креатинфосфата, который поступает в цитозоль. Креатинфосфокиназа эффекторных клеточных структур транспортиует фосфатную группу креатинфосфата на АДФ с образованием АТФ, который и используется в процессе жизнедеятельности клетки. Ферментные системы транспорта энергии могут быть повреждены различными патогенными агентами, в связи с чем даже на фоне высокого общего содержания АТФ в клетке может развиваться его дефицит в энергорасходующих структурах.

Нарушение энергообеспечения клеток и расстройства их жизнедеятельности может развиваться и в условиях достаточной продукции и нормального транспорта энергии АТФ. Это может быть результатом повреждения ферментных механизмов утилизации энергии, главным образом за счет снижения активности АТФазы (АТФазы актомиозина, К + - Na + - зависимой АТФазы плазмолеммы, Mg 2+ - зависимой АТФазы “кальциевой помпы” саркоплазматического ретикулума и др.).

Нарушение процессов энергообеспечения, в свою очередь, может стать одним из факторов расстройств функции мембранного аппарата клеток, их ферментных систем, баланса ионов и жидкости, а также механизмов регуляции клетки.

2. Повреждение мембран и ферментов играет существенную роль в расстройстве жизнедеятельности клетки, а также переходе обратимых изменений в ней в необратимые. Это обусловлено тем, сто основные свойства клетки в существенной мере зависит от состояния ее мембран и связанных с ними или свободных энзимов.

а). Одним из важнейших механизмов повреждения мембран и ферментов является интенсификация свободнорадикальных реакций (СРР) и ПСОЛ. Эти реакции протекают в клетках и в норме, являясь необходимым звеном таких жизненноважных процессов, как транспорт электронов в цепи дыхательных ферментов, синтез простагландинов и лейкотриенов, пролиферация и созревание клеток, фагоцитоз, метаболизм катехоламинов и др. ПСОЛ участвует в процессах регуляции липидного состава биомембран и активности ферментов. Последнее является результатом как прямого действия продуктов липопероксидных реакций на энзимы, так и опосредованного – через изменение состояния мембран, с которыми ассоциированы многие ферменты.

Интенсивность ПСОЛ регулируются соотношением факторов, активирующих (прооксиданты) и подавляющих (антиоксиданты) этот процесс. К числу наиболее активных прооксидантов относятся легко окисляющиеся соединения, индуцирующие свободные радикалы, в частности, нафтохиноны, витамины А и Д, восстановителя – НАДФН 2 , НАДН 2 , липоевая кислота, продукты метаболизма простагландинов и катехоламинов.

Процесс ПСОЛ условно можно разделить на три этапа: 1) кислордной иницикации (“кислородный” этап), 2) образования свободных радикалов органических и неорганических агентов (“свободнорадикальный” этап), 3) продукции перекисей липидов (“перекисный” этап). Инициальным звеном свободнорадикальных перекисных реакций при повреждении клетки является, как правило, образование в процессе оксигеназных реакций так называемых активных форм кислорода: супероксидного радикала кислорода (О 2 - .), гидроксильного радикала (ОН.), перекиси водорода (Н 2 О 2), которые взаимодействуют с компонентами структур клеток, главным образом с липидами, белками и нуклеиновыми кислотами. В результате образуются активные радикалы, в частности, липидов, а также их перекиси. При этом может приобрести цепной “лавинообразный” характер.

Однако это происходит не всегда. В клетках протекают процессы и действуют факторы, которые ограничивают или даже прекращают свободнорадикальные и перекисные реакции, т.е. оказывают антиоксидантный эффект. Одним из таких процессов является взаимодействие радикалов и гидроперекисей липидов между собой, что ведет к образованию “нерадикальных” соединений. Ведущую роль в системе антиоксидантной защите клеток играют механизмы ферментной, а также не ферментной природы.

Исследование последних лет показали, что чрезмерная активация свободнорадикальных и перекисных реакция является одним из главных факторов повреждения мембран и ферментов клеток. Ведущее значение при этом имеют следующие процессы: 1) изменение физико-химических свойств липидов мембран, что обусловливает нарушение конформации их липопротеидных комплексов и в связи с этим снижение активности белков и ферментных систем, обеспечивающих рецепцию гуморальных воздействий, трансмембранный перенос ионов и молекул, структурную целостность мембран; 2) изменение физико-химических свойств белковых мицелл, выполняющих структурную и ферментные функции в клетке; 3) образование структурных дефектов в мембране – т.н. простейших каналов (кластеров) вследствие внедрения в них продуктов ПСОЛ. Указанные процессы, в сою очередь, обуславливают нарушение важных для жизнедеятельности клеток процессов – возбудимости, генерации и проведения неравного импульса, обмена веществ, восприятия и реализации регулирующих воздействий, межклеточного взаимодействия и др.

б). Активация гидролаз (лизосомальных, мембраносвязанных и свободных).

В норме состав и состояние мембран и ферментов модифицируется не только свободнорадикальными и липоперексидными процессами, но также мембраносвязанными, свободными (солюбилизированными) и лизосомальными ферментами: липазами, фосфолипазами, протеазами. Под влиянием патогенных факторов их активность или содержание в гиалоплазме клетки может повыситься (в частности, вследствие развития ацидоза, способствующего увеличению выхода ферментов из лизосом и их последующей активации). В связи с этим интенсивному гидролизу подвергаются глицерофосфолипиды и белки мембран, а также ферменты клеток. Это сопровождается значительным повышением проницаемости мембран и снижением кинетических свойств ферментов.

в). Внедрение амфифильных соединений в липидную фазу мембран.

В результате действия гидролаз (главным образом липаз и фосфолипаз) в клетке накапливаются свободные жирные кислоты и лизофосфолипиды, в частности, глицерофосфолипиды: фосфотидилхолины, фосфатидилэтаноламины, фосфатидилсерины. Они получили название амфифильных соединений в связи со способностью проникать и фиксироваться в обеих – как в гидрофобной, так и в гидрофильных средах мембран клеток (амфи – означает “оба”, “два”). При сравнительно небольшом уровне в клетке амфифильных соединений они, внедряясь в биомембраны изменяют нормальную последовательность глицерофосфолипидов, нарушают структуру липопротеидных комплексов, увеличивают пронацаемость, а также меняют конфигурацию мембран в связи с “клинообразной” формой липидных мицелл. Накопление в большом количестве амфифилов сопровождается массированным внедрением их в мембраны, что так же, как и избыток гидроперекисей липидов, ведет к формированию кластеров и микроразрывов в них. Повреждение мембран и ферментов клеток является одной из главных причин существенного расстройства жизнедеятельности клеток и нередко приводит к их гибели.

3. Дисбаланс ионов и жидкости в клетке. Как правило, нарушение трансмембранного распределения, а также внутриклеточного содержания и соотношения различных ионов развивается вслед за или одновременно с расстройствами энергетического обеспечения и сочетается с признаками повреждения мембран и ферментов клеток. В результате этого существенно изменяется проницаемость мембран для многих ионов. В наибольшей мере это относится к калию, натрию, кальцию, магнию, хлору, то есть ионам, которые принимают участие в таких жизненноважных процессах, как возбуждение, его проведение, электромеханическое сопряжение и др.

а). Изменение трансмембранного соотношения ионов. Как правило, дисбаланс ионов проявляется накоплением в клетке натрия и потерей калия.

Следствием дисбаланса является изменение мембранного потенциала покоя и действия, а также нарушение проведения импульса возбуждения. Эти изменения имеют важное значение, поскольку они нередко являются одним из важных признаков наличия и характера повреждения клеток. Примером могут служить изменения электрокардиограммы при повреждении клеток миокарда, электроэнфецалограммы при нарушении структуры и функций нейронов головного мозга.

б). Гипер- и дегидратацияклеток.

Нарушения внутриклеточного содержания ионов обусловливают изменение объема клеток вследствие дисбаланса жидкости. Он проявляется либо гипергадратацией (уменьшением содержания жидкости) клетки. Так, например, повышение содержания ионов натрия и кальция в поврежденных клетках сопровождается увеличением в них осмотического давления. В результате этого в клетках накапливается вода. Клетки при этом набухают, объем их увеличивается, что сопровождается увеличением растяжением и нередко микроразрывами цитолеммы и мембран органелл. Напротив, дегидратация клеток (например, при некоторых инфекционных заболеваниях, обусловливающих потерю воды) характеризуется выходом из них жидкости и растворенных в ней белков (в том числе ферментов), а также других органических и неорганических водорастворимых соединений. Внутриклеточная дегидратация нередко сочетается со сморщиванием ядра, распадом митохондрий и других органелл.

4. Одним из существенных механизмов расстройства жизнедеятельности клетки является повреждение генетической программы и /или механизмов ее реализации. Основными процессами, ведущими к изменению генетической информации клетки, являются мутации, депрессия патогенных генов (например, онкогенов), подавление активности жизненноважных генов (например, регулирующих синтез ферментов) или внедрение в геном фрагмента чужеродной ДНК (например, ДНК онкогенного вируса, аномального участка ДНК другой клетки).

Помимо изменений в генетической программе, важным механизмом расстройства жизнедеятельности клеток является нарушение реализации этой программы , главным образом, в процессе клеточного деления при митозе или мейозе.

5. Важным механизмом повреждения клеток является расстройство регуляции внутриклеточных процессов. Это может быть результатом нарушений, развивающихся на одном или нескольких уровнях регуляторных механизмов:

    на уровне взаимодействия биологически активных веществ (гормонов, нейромедиаторов и др.) с рецепторами клетки;

    на уровне клеточных т.н. “вторых посредников” (мессенджеров) нервных влияний: циклических нуклеотидов-аденозинмонофосфата (цАМФ) и гуанозинмонофосфата (цГМФ), образующих в ответ на действие “первых посредников” – гормонов и нейромедиаторов. Примером может служить нарушение формирования мембранного потенциала в кардиоцитах при накоплении в них цАМФ, что является, в частности, одной из возможных причин развития сердечных аритмий;

    на уровне метаболических реакций, регулируемых циклическими нуклеотидами или другими внутриклеточными факторами. Так, нарушение процесса активации клеточных ферментов может существенно изменить интенсивность метаболических реакций и, как следствие, привести к расстройству жизнедеятельности клетки.

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-2.jpg" alt="> План лекции 1. Повреждение клетки, понятие, этиология. 2. Виды повреждения клетки."> План лекции 1. Повреждение клетки, понятие, этиология. 2. Виды повреждения клетки. Стадии острого и хронического повреждения клетки. 3. Специфические и неспецифические проявления повреждения клетки. 4. Виды гибели клетки. Некроз и апоптоз. Патогенез апоптоза. 5. Общие механизмы повреждения клетки. Патогенез повреждения клеточных мембран.

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-3.jpg" alt="> Дисбаланс ионов и жидкости в патогенезе повреждения клетки. Нарушение"> Дисбаланс ионов и жидкости в патогенезе повреждения клетки. Нарушение энергообеспечения процессов, протекающих в клетке. Защитно-компенсаторные реакции при повреждении клетки.

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-4.jpg" alt="> ПОВРЕЖДЕНИЕ КЛЕТКИ - это нарушение структуры и функции клетки "> ПОВРЕЖДЕНИЕ КЛЕТКИ - это нарушение структуры и функции клетки Причины Экзогенные Эндогенные Мех. воздействия, Избыток или дефицит электрический ток, О 2, ионов Н+, К+, Са++, высокая, низкая свободные радикалы, температура, колебания электромагнитные волны, осмотического ионизирующая радиация, давления, метаболиты, кислоты, щелочи, соли продукты распада тяжелых металлов, микробов, медиаторы лекарства, микробы, повреждения, вирусы, грибы, иммунные комплексы и психогенные факторы др.

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-5.jpg" alt=">Резистентность клетки к повреждению зависит от 1. Вида клеток Высокоспециализированные клетки"> Резистентность клетки к повреждению зависит от 1. Вида клеток Высокоспециализированные клетки (нервные и мышечные) с высоким уровнем внутриклеточной регенерации устойчивы к повреждению

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-6.jpg" alt="> Клетки с низким внутриклеточным уровнем регенерации (клетки крови, кожи, кишечный"> Клетки с низким внутриклеточным уровнем регенерации (клетки крови, кожи, кишечный эпителий) легко повреждаются.

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-7.jpg" alt="> 2. Состояния гликокалекса Нарушение образования гликокалекса уменьшает устойчивость клетки к"> 2. Состояния гликокалекса Нарушение образования гликокалекса уменьшает устойчивость клетки к повреждению

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-8.jpg" alt=">3. Микроокружения клеток (состояния соединительной ткани) Микроокружение регулирует дифференцировку и пролиферацию клеток ">

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-9.jpg" alt="> 4. Состояния нервной и эндокринной регуляции Денервированные клетки легче"> 4. Состояния нервной и эндокринной регуляции Денервированные клетки легче повреждаются. Нервная система регулирует энергетические и пластические процессы в клетке. Клетка, лишенная нервной и эндокринной регуляции подвергается апоптозу. Повреждение клетки может быть связано с поступлением по аксонам патотрофогенов – веществ, образующихся в поврежденных нейронах и вызывающих патологические изменения клеток- реципиентов.

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-10.jpg" alt="> 5. Состояния макроорганизма Авитаминозы, белковая недостаточность снижают резистентность клетки к повреждению ">

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-11.jpg" alt="> 6. Фазы жизненного цикла клетки К различным воздействиям клетка по- разному чувствительна в"> 6. Фазы жизненного цикла клетки К различным воздействиям клетка по- разному чувствительна в разные фазы цикла (ионизирующая радиация повреждает клетку в фазах G 1 и G 2)

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-12.jpg" alt="> ВИДЫ ПОВРЕЖДЕНИЯ КЛЕТКИ ОСТРОЕ этиологический ХРОНИЧЕСКОЕ фактор действует этиол. фактор непродолжитель-"> ВИДЫ ПОВРЕЖДЕНИЯ КЛЕТКИ ОСТРОЕ этиологический ХРОНИЧЕСКОЕ фактор действует этиол. фактор непродолжитель- малой ное время, интенсивности, достаточно действует интенсивный продолжительно

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-13.jpg" alt=">ПРЯМОЕ (ПЕРВИЧНОЕ) - непосредственное повреждение клетки этиологическим фактором. ОПОСРЕДОВАННОЕ (ВТОРИЧНОЕ) -"> ПРЯМОЕ (ПЕРВИЧНОЕ) - непосредственное повреждение клетки этиологическим фактором. ОПОСРЕДОВАННОЕ (ВТОРИЧНОЕ) - является следствием первичного, развивается под действием БАВ - медиаторов повреждения, нарушения регуляции и т. д.

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-14.jpg" alt="> Парциальное Обратимое Тотальное Необратимое ">

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-15.jpg" alt=">А- клетка нормального эпителия В- обратимое повреждение С- необратимое повреждение ">

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-16.jpg" alt="> Стадии острого повреждения клетки 1. Первичное специфическое воздействие повреждающего"> Стадии острого повреждения клетки 1. Первичное специфическое воздействие повреждающего фактора 2. неспецифическая реакция клетки 3. паранекроз (обратимое повреждение) 4. некробиоз («агония» клетки) 5. некроз

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-17.jpg" alt=">Стадии хронического повреждения клетки 1. Аварийная Повышение функций оставшихся"> Стадии хронического повреждения клетки 1. Аварийная Повышение функций оставшихся структур, активация генетического аппарата клетки активация синтетических процессов 2. Стадия устойчивой адаптации Гипертрофия и гиперплазия структур клетки, стабилизация синтеза РНК, белков и АТФ 3. Стадия дистрофических изменений и гибели клетки

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-18.jpg" alt="> ПРОЯВЛЕНИЯ ПОВРЕЖДЕНИЯ КЛЕТОК Специфические Неспецифические СПЕЦИФИЧЕСКИЕ"> ПРОЯВЛЕНИЯ ПОВРЕЖДЕНИЯ КЛЕТОК Специфические Неспецифические СПЕЦИФИЧЕСКИЕ Обусловлены особенностью (специфическим действием) этиологического фактора: цианиды блокада цитохромоксидазы; механическое воздействие разрыв мембран; высокая температура коагуляция белков;

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-19.jpg" alt="> НЕСПЕЦИФИЧЕСКИЕ Сопровождают любое повреждение клеток: повышение проницаемости"> НЕСПЕЦИФИЧЕСКИЕ Сопровождают любое повреждение клеток: повышение проницаемости мембран угнетение активности транспортных ферментов, мембранных насосов нарушение рецепторного аппарата клеток нарушение ионного состава клетки, нарушение энергообразования, внутриклеточный ацидоз, Изменение мембранного потенциала

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-20.jpg" alt="> Типовые проявления повреждения клеток Ядро Хромосомные аберрации"> Типовые проявления повреждения клеток Ядро Хромосомные аберрации Рибосомы и полисомы Нарушение синтеза белка Лизосомы Ферментативное расщепление субклеточных структур (аутолизис) Цитоскелет Изменения формы (выпячивания, пузыри), (микротрубочки, нарушения движения (хемотаксис), деления, микрофиламенты) секреции Митохондрии Нарушение синтеза АТФ, депонирования кальция, набухание Плазматическая Нарушение разделительной, соединительной, мембрана контактной, транспортной и др. функций

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-21.jpg" alt="> Основные формы гибели клетки Некроз "> Основные формы гибели клетки Некроз Апоптоз НЕКРОЗ – генетически неконтролируемая форма гибели клетки при действии патологических стимулов АПОПТОЗ – генетически запрограммированная гибель клетки при действии патологических и физиологических стимулов

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-22.jpg" alt="> Некроз Признаки некроза (некробиоза): набухание клетки, гидролиз и"> Некроз Признаки некроза (некробиоза): набухание клетки, гидролиз и денатурация (коагуляция) цитоплазматических белков, разрушение плазматической и внутриклеточных мембран, высвобождение ферментов лизосом, выход внутриклеточного содержимого в межклеточное пространство Воспаление

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-23.jpg" alt="> Апоптоз Признаки апоптоза: сжатие клетки, "> Апоптоз Признаки апоптоза: сжатие клетки, уплотнение плазматической мембраны, конденсация ядерного хроматина, фрагментация ядра и цитоплазмы → апоптозные тельца Ф а г о ц и т о з (без воспаления)

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-24.jpg" alt="> Ключевые (ядерные) признаки апоптоза конденсация ядерного хроматина "> Ключевые (ядерные) признаки апоптоза конденсация ядерного хроматина фрагментация ДНК (ядра) +

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-25.jpg" alt="> СТАДИИ АПОПТОЗА 1. Инициации 2. Программирования 3. Реализации"> СТАДИИ АПОПТОЗА 1. Инициации 2. Программирования 3. Реализации программы 4. Фагоцитоз апоптозных телец

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-26.jpg" alt=">Механизмы реализации апоптоза Рецепторный Митохондриальный р53 -опосредованный "> Механизмы реализации апоптоза Рецепторный Митохондриальный р53 -опосредованный Перфорин-гранзимовый

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-27.jpg" alt="> Рецепторный путь Рецептор cмерти (R) Лиганд (L) Активация"> Рецепторный путь Рецептор cмерти (R) Лиганд (L) Активация адаптерных белков → «домены смерти» Активация каспаз (протеаз) Фрагментация ДНК

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-29.jpg" alt=">Митохондриальный путь митохондрия Цитохром С Прокаспазы 2, 3, 9"> Митохондриальный путь митохондрия Цитохром С Прокаспазы 2, 3, 9 AIF Цитохром С Прокаспазы 2, 3, 9 AIF

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-30.jpg" alt=">Р 53 -опосредованный путь Накопление р53 "> Р 53 -опосредованный путь Накопление р53 Блок Апоптоз пролиферации Нерепарируемы Репарация е повреждения ДНК

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-31.jpg" alt=">Перфорин-гранзимовый путь Перфорин Клетка- киллер мишень "> Перфорин-гранзимовый путь Перфорин Клетка- киллер мишень Гранзим

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-32.jpg" alt=">Альтернативные формы генетически запрограммированной гибели клетки ">

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-33.jpg" alt=">Аутофагия – это процесс, при котором клетка избавляется от «клеточного мусора» –"> Аутофагия – это процесс, при котором клетка избавляется от «клеточного мусора» – поврежденных органелл и дефектных белков. Механизм мечение части клетки, подлежащей удалению обертывание ее мембраной с образованием вакуоли (аутофагосомы) слияние вакуоли с лизосомой (аутофаголизосома) и переваривание

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-34.jpg" alt=">Морфологические отличия от апоптоз Наличие многочисленных везикул и вакуолей, содержащих лизируемые компоненты клетки"> Морфологические отличия от апоптоз Наличие многочисленных везикул и вакуолей, содержащих лизируемые компоненты клетки Отсутствие ключевых признаков апоптоза: конденсированного хроматина разрывов (фрагментов) ДНК

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-35.jpg" alt="> PARAPTOSIS (параптоз) – околоядерный апоптоз – характеризуется набуханием"> PARAPTOSIS (параптоз) – околоядерный апоптоз – характеризуется набуханием ЭПР и митохондрий клетки при отсутствии ключевых признаков апоптоза. «Митотическая катастрофа» – гибель клетки в результате грубых нарушений митоза. Характеризуется образованием микроядер при отсутствии ключевых признаков апоптоза.

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-36.jpg" alt="> ANOIKIS (анойкиз) – гибель клетки в результате утраты клеточно-матриксных взаимодействий."> ANOIKIS (анойкиз) – гибель клетки в результате утраты клеточно-матриксных взаимодействий. «the state of being without a home» – остаться без дома. SENESCENCE (сенесенс) – гибель клетки вследствие «одряхления» , т. е. при утрате способности отвечать на действие стимулов. Проявляется повышенной гранулярностью цитоплазмы, гиперэкспрессией антимитотического фактора р53.

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-37.jpg" alt=">Формы гибели клетки: отличаются разнообразием определяются природой повреждающего фактора определяются"> Формы гибели клетки: отличаются разнообразием определяются природой повреждающего фактора определяются характером повреждений

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-39.jpg" alt="> Некроз Апоптоз Смерть поврежденной Программированная гибель "> Некроз Апоптоз Смерть поврежденной Программированная гибель клетки Отмечается необратимое Программа апоптоза прекращение запускается жизнедеятельности, информационным сигналом которому предшествует состояние паранекроза и некробиоза Является завершающим Завершается фагоцитозом этапом клеточных фрагментов разрушенной дистрофий клетки Является следствием Наступает в ходе многих действия на клетку естественных процессов и при высоко патогенных адаптации клетки к факторов повреждающим факторам

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-40.jpg" alt="> Некроз Апоптоз Морфологически отмечается Морфологически кариопикноз или кариолизис,"> Некроз Апоптоз Морфологически отмечается Морфологически кариопикноз или кариолизис, отмечается конденсация и набухание, сморщивание, фрагментация цитоплазмы, кальциноз в митохондриях конденсация и рексис ядра При лизисе клетки Не сопровождается происходит освобождение развитием воспаления содержимого в межклеточное пространство, что сопровождается развитием воспаления Лизис некр. клетки может Энергозависимый процесс, происходить под влиянием требует синтеза белка ферментов лизосом (аутолиз) и фагоцитозом (гетеролизис), без использования энергии

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-41.jpg" alt=">ОБЩИЕ МЕХАНИЗМЫ ПОВРЕЖДЕНИЯ КЛЕТКИ Повреждение мембранного аппарата и ферментных систем клетки"> ОБЩИЕ МЕХАНИЗМЫ ПОВРЕЖДЕНИЯ КЛЕТКИ Повреждение мембранного аппарата и ферментных систем клетки Нарушение энергетического обеспечения процессов, протекающих в клетке Дисбаланс ионов и жидкости в клетке Нарушение генетической программы клетки Расстройство внутриклеточных механизмов регуляции функции клеток

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-42.jpg" alt=">Повреждение мембранного аппарата и ферментных систем клетки Функции плазмолеммы ">

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-44.jpg" alt=">ПАТОГЕНЕЗ ПОВРЕЖДЕНИЯ МЕМБРАН Активация ПОЛ Активация мембранных фосфолипаз и других"> ПАТОГЕНЕЗ ПОВРЕЖДЕНИЯ МЕМБРАН Активация ПОЛ Активация мембранных фосфолипаз и других гидролаз Осмотическое (механическое) повреждение мембран Адсорбция на липидном слое крупномолекулярных комплексов, в том числе иммунное повреждение

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-45.jpg" alt="> АКТИВАЦИЯ ПОЛ 1. Избыточное образование свободных радикалов (действие ионизирующей"> АКТИВАЦИЯ ПОЛ 1. Избыточное образование свободных радикалов (действие ионизирующей радиации, ультрафиолетовых лучей, химических соединений (тяжелые металлы, CCl 4, фосфор, гербициды, пестициды) гипероксия, стресс, гипервитаминоз Д) 2. Нарушение функционирования антиоксидантных систем клетки (наследственное и приобретенное)

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-46.jpg" alt="> ПРООКСИДАНТЫ АНТИОКСИДАНТЫ Вит Д, НАДФН 2, "> ПРООКСИДАНТЫ АНТИОКСИДАНТЫ Вит Д, НАДФН 2, СОД, каталаза, НАДН 2, глутатионперок- продукты сидаза, вит. Е, метаболизма белки, содержащие простагландинов SH-группы, и катехоламинов, глютатион, цистеин, металлы с ПОЛ церуллоплазмин, переменной трансферин валентностью

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-48.jpg" alt=">А) Образование свободных радикалов Воспаление Радиация Химические агенты Реперфузия Пероксидное окисление "> А) Образование свободных радикалов Воспаление Радиация Химические агенты Реперфузия Пероксидное окисление мембран Фрагментация Разрушение белков ДНК В) Повреждение клетки свободными радикалами С) Антиоксидантная защита клетки

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-49.jpg" alt="> Цепная реакция перекисного окисления липидов. "> Цепная реакция перекисного окисления липидов. . НО + LH (ненасыщенная ЖК) H 2 O + L . . . L + O 2 LO 2 + LH LOOH + L . . НО + LO

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-50.jpg" alt="> J N N K K ">

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-51.jpg" alt="> ПОЛ Изменение физико-химических свойств, биохимического состава и структуры мембран клеток,"> ПОЛ Изменение физико-химических свойств, биохимического состава и структуры мембран клеток, разрушение нуклеиновых кислот, инактивация сульфгидрильных групп белков, подавление процессов окислительного фосфорилирования

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-52.jpg" alt=">АКТИВАЦИЯ МЕМБРАННЫХ ФОСФОЛИПАЗ И ДРУГИХ ГИДРОЛАЗ ишемия яды змей,"> АКТИВАЦИЯ МЕМБРАННЫХ ФОСФОЛИПАЗ И ДРУГИХ ГИДРОЛАЗ ишемия яды змей, пауков, укусы пчел увеличение содержания кальция в клетке повышение проницаемости лизосомальных мембран разрушение фосфолипидов мембран, цитоскелета клетки

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-53.jpg" alt=">ОСМОТИЧЕСКОЕ ПОВРЕЖДЕНИЕ МЕМБРАН Осмотическое давление "> ОСМОТИЧЕСКОЕ ПОВРЕЖДЕНИЕ МЕМБРАН Осмотическое давление давление внутри клетки внеклеточного сектора См орщ кле Н 2 О тки ивани е

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-54.jpg" alt="> Осмотическое давление Осмотическое"> Осмотическое давление Осмотическое давление внеклеточного внутри клетки сектора Н 2 О Наб кле ухани тки е Разрыв мембран (осмотический гемолиз эритроцитов)

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-55.jpg" alt=">Адсорбция крупномолекулярных комплексов ">

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-56.jpg" alt="> ИММУННОЕ ПОВРЕЖДЕНИЕ МЕМБРАН Причины: взаимодействие"> ИММУННОЕ ПОВРЕЖДЕНИЕ МЕМБРАН Причины: взаимодействие антител с рецепторами на поверхности мембран образование иммунных комплексов активация компонентов комплемента активация лимфоцитов-киллеров активация макрофагов комплекс с С 5 по С 9 компонентов комплемента, белок лимфоцитов-киллеров перфорин образование каналов в мембране лизосомальные ферменты, свободные радикалы кислорода

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-57.jpg" alt="> Последствия повреждения мембран Ø Повышение проницаемости Нарушение барьерной функции, гиперферментемия, ионный"> Последствия повреждения мембран Ø Повышение проницаемости Нарушение барьерной функции, гиперферментемия, ионный дисбаланс, увеличение сорбционной способности, развитие аутоиммунных процессов Ø Нарушение рецепторной функции Ø Нарушение процессов ионного транспорта и выработки энергии Ø Нарушение мембранного потенциала покоя и потенциала действия нарушение генерации и передачи электрических импульсов Ø Нарушение клеточного метаболизма и развитие внутриклеточного ацидоза

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-58.jpg" alt="> ИОННЫЙ ДИСБАЛАНС Причины Повреждение мембран"> ИОННЫЙ ДИСБАЛАНС Причины Повреждение мембран Энергетический дефицит мембранного Гиперкалиемия потенциала К+ Pосм. Na+, Ca++ Н 2 О отек клетки

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-59.jpg" alt="> Последствия увеличения кальция в клетке Активация мембранных фосфолипаз, "> Последствия увеличения кальция в клетке Активация мембранных фосфолипаз, кальцийзависимых протеаз разобщение окисления и фосфорилирования в митохондриях стойкое сокращение миофибрилл (контрактуры) снижение адренореактивности

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-60.jpg" alt=">НАРУШЕНИЕ ЭНЕРГЕТИЧЕСКОГО ОБЕСПЕЧЕНИЯ ПРОЦЕССОВ, ПРОТЕКАЮЩИХ В КЛЕТКЕ а) Снижение процессов ресинтеза АТФ ">

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-61.jpg" alt=">ØДефицит кислорода или субстратов метаболизма ØПовреждение митохондрий ØСнижение активности ферментов тканевого дыхания ">

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-62.jpg" alt=">б) Нарушение внутриклеточного транспорта энергии АТФ в) Нарушение использования "> б) Нарушение внутриклеточного транспорта энергии АТФ в) Нарушение использования энергии АТФ МИТОХОНДРИЯ АТФ-аза КФ КФ АТФ КФК Кр Кр АДФ

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-63.jpg" alt="> Последствия энергетического дефицита АТФ функции клетки АНАЭРОБНОГО ГЛИКОЛИЗА "> Последствия энергетического дефицита АТФ функции клетки АНАЭРОБНОГО ГЛИКОЛИЗА ИОННЫЙ ДИСБАЛАНС ЛАКТАТА КАЛЬЦИЯ АЦИДОЗ АКТИВАЦИЯ ЛИЗОСОМАЛЬНЫХ ГИДРОЛАЗ ФЕРМЕНТОВ АУТОЛИЗ

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-64.jpg" alt="> ЗАЩИТНО-КОМПЕНСАТОРНЫЕ РЕАКЦИИ ПРИ ПОВРЕЖДЕНИИ КЛЕТКИ ØОграничение функциональной активности клетки ØАктивация анаэробного гликолиза"> ЗАЩИТНО-КОМПЕНСАТОРНЫЕ РЕАКЦИИ ПРИ ПОВРЕЖДЕНИИ КЛЕТКИ ØОграничение функциональной активности клетки ØАктивация анаэробного гликолиза ØИнтенсификация ресинтеза АТФ в неповрежденных митохондриях ØАктивация ферментов транспорта и утилизации АТФ ØПовышение синтеза антиоксидантных ферменто Ø Активация механизмов репарации компонентов мембран

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-65.jpg" alt=">ØАктивация микросомального окисления в гепатоцитах ØАктивация буферных систем ØАктивация синтеза ферментов системы детоксикации ØАктивация"> ØАктивация микросомального окисления в гепатоцитах ØАктивация буферных систем ØАктивация синтеза ферментов системы детоксикации ØАктивация синтеза цитокинов (интерферонов) ØАктивация синтеза белков «теплового шока» Ø Гиперплазия и гипертрофия субклеточных структур

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-66.jpg" alt="> БТШ являются многофункциональными клеточными регуляторами, которые синтезируются при любом"> БТШ являются многофункциональными клеточными регуляторами, которые синтезируются при любом повреждении клетки. Впервые они были обнаружены в клетках дрозофил, подвергшихся тепловому воздействию. В зависимости от молекулярной массы и функции выделяют четыре группы БТШ.

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-67.jpg" alt=">1. БТШ Предупреждают избыточное (высокомо- стимулирование клетки гормонами в условиях лекулярные)"> 1. БТШ Предупреждают избыточное (высокомо- стимулирование клетки гормонами в условиях лекулярные) стресса - 80 к. Да 2. БТШ – Сопровождают белковые молекулы в 70 к. ДА различные отсеки клетки и к месту образования макромолекулярных комплексов, что предохраняет белки цитоплазмы и ядра от агрегации и денатурации Мигрируют в ядро, связываются с хроматином и ядрышком предохраняют эти белки от мутаций и обеспечивают условия для работы систем репарации. В цитоплазме взаимодействуют с микротрубочками и микрофиламентами и стабилизируют цитоскелет клетки.

Src="http://present5.com/presentation/3/166761645_158179913.pdf-img/166761645_158179913.pdf-68.jpg" alt=">3. БТШ - 15 -30 к. Да Взаимодействуют с "> 3. БТШ - 15 -30 к. Да Взаимодействуют с хроматином ядра и оказывают действие на осуществление клеточного цикла, повышают устойчивость клетки к некрозу. 4. БТШ - 8, 5 -12 к. Да, Являются рецепторами убиквитины - белки для специфических маркеры апоптоза протеаз. Убиквитация (ubiquitоus - вездесущий) необходима для устранения денатурированных белков или запуска апоптоза.

Эта группа нарушений обусловлена блокадой образования, транспорта и утилизации АТФ.

Образование АТФ блокируется при снижении содержания кислорода и глюкозы, прямом повреждении митохондрий и разобщении цепи аэробного фосфорилирования и др. Транспорт АТФ связан с ингибированием ферментных комплексов внутренней мембраны митохондрии (сниженная активность адениннуклеотидтрансферазы и креатинфосфокиназы), нарушением циклоза. Блокирование утилизации АТФ происходит при подавлении АТФазной активности.

Синтез АТФ сопряжен с интенсивными ферментными процессами в митохондриях. Активность митохондрий зависит от разнообразных внутренних и внешних факторов. Функциональная недостаточность митохондрий может быть абсолютной или относительной. Абсолютная недостаточность энергетического обеспечения клетки вызывается значительным снижением функциональной активности митохондрий, не удовлетворяющей даже обычным физиологическим потребностям клетки. Подобные нарушения вызывают прямые повреждения органелл токсическими веществами, блокаду трансляции рРНК, разобщение цепей окислительного фосфорилирования, блокаду активности отдельных ферментов (например, цитохромов) митохондрий. Внутриклеточный ацидоз, избыток в клетке ионов кальция, неэтерифицированные жирные кислоты, избыточное действие на клетку адреналина и гормонов щитовидной железы, микробные токсины, побочное действие антибиотиков, недостаток и избыток кислорода разобщают аэробное окислительное фосфорилирование.

Относительная недостаточность энергетического обеспечения связана с резким усилением потребности клетки в энергии, когда даже повышенная активность митохондрий не может ее удовлетворить. Примером подобного явления служит резкое усиление потребления энергии сердечным миоцитом или скелетным мышечным волокном при тяжелой физической нагрузке.

Относительная или абсолютная недостаточность энергетического обмена клеток и неклеточных структур (симпласта и синцития) может быть обусловлена низким поступлением в клетку энергетических субстратов, в первую очередь глюкозы. Так, при сокращении скелетного мышечного волокна его потребность в газообмене и глюкозе увеличивается в десятки раз. Даже усиление кровоснабжения недостаточно для полного обеспечения потребностей. Недостаток глюкозы восполняется разрушением эндогенных запасов гликогена и частичным переходом к анаэробному гликолизу. Последний процесс сопровождается накоплением продуктов промежуточного обмена с развитием метаболического ацидоза.

Блокада протонной помпы внутренней мембраны митохондрии, ферментов-переносчиков энергии (аденилнуклеотидтрансферазы, креатинфосфокиназы) вызывает значительное затруднение переноса энергии АТФ от митохондрий к местам ее потребления. В этом случае даже достаточный синтез АТФ в митохондриях сопровождается энергетическим голоданием.

Врожденное или приобретенное подавление АТФаз клетки обычно носит парциальный характер: подавляется либо один, либо группа близких ферментов. Разнообразные энергоемкие процессы в клетке предполагают активность специфических АТФаз, превращающих химическую энергию АТФ в механическую работу, транспортные процессы против градиентов концентрации, химические реакции синтеза и др. Ко многим из них на сегодня найдены химические препараты, блокирующие активность АТФаз. Блокада АТФаз сопровождается снижением или полным прекращением обеспечиваемых ими процессов. Так, блокируя АТФазу Na + /K + -Hacoca, нарушается поддержание мембранного потенциала клетки.

В случае полного прекращения энергетического обеспечения наступает мгновенная смерь клетки, то есть прекращаются функциональные процессы в клетке, характеризующие ее как целостную систему. Остаточные ферментные реакции, взаимодействия на уровне отдельных макромолекулярных комплексов и даже органелл не в состоянии продлить существование клетки как структурной единицы живого.

При недостаточности энергетического обеспечения, превышении разрушения АТФ в сравнении с его синтезом в клетке накапливаются АМФ и АДФ, которые могут существенно изменять функциональное состояние клетки.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Реконвалесценция (исход)

№27. Объяснить причины и механизмы развития горной болезни.

Гипобария возникает при: подъеме на высоту (горы), разгерметизация летательных аппаратах, в специальных барокамерах.

Проявления:

3000-4000 - Расширение газов и увеличение их давления в замкнутых и полузамкнутых полостях (боли в гайморовых и лобных пазухах, в среднем ухе, ЖКТ, плевр. полости)

9000 м – декомпрессия (газовая эмболия азотом)

19000м – высотная тканевая эмфизема (закипание жидких сред организма)

Причина горной болезни: снижение атмосферного давления (декомпрессия) и уменьшение парциального давления кислорода во вдыхаемом воздухе.

Условия: скорость и высота подъема, место жительства, тренированность, состояние здоровья, климатические условия, фактор пола и возраст (более устойчивы женщины и новорожденные).

Ведущее звено патогенеза: гипоксемия→гипоксия

  1. Стадия приспособления - от 1000 до 4000 м/ ↓ давления кислорода в воздухе→ ↓ давления кислорода в верхних дыхательных путях →гипоксемия и гиперкапния→ раздражения хеморецепторов сосудов каротидного синуса и дуги аорты→ стимуляция дыхательного и сосудодвигательного центров → одышка, тахикардия, АД; выход эритроцитов из депо

4000-5000м – растормаживание и возбуждение корковых клеток (раздражительность), активируется эритропоэз

  1. Стадия декомпенсации - развивается на высоте ≥5000 м/ гипервентиляция → гипокапния и усиление гипоксемии →газовый алкалоз →экзогенная гипобарическая гипоксия. Появляется усталость, сонливость, малоподвижность, торможение рефлексов, дыхание Чейна-Стокса и Биота. Смерть от паралича дыхательного центра.

При высотной болезни в результате очень быстрого подъема без кислородных приборов развивается декомпенсация (приспособительные механизмы не успевают развиться)

№28. Назвать основные защитно-приспособительные реакции при горной болезни и объяснить их механизмы.

↓ давления кислорода в воздухе→ ↓ давления кислорода в верхних дыхательных путях →гипоксемия и гиперкапния→ раздражения хеморецепторов сосудов каротидного синуса и дуги аорты→ стимуляция дыхательного и сосудодвигательного центров → одышка, тахикардия, АД; выход эритроцитов из депо→ гипокапния и усиление гипоксемии →газовый алкалоз →экзогенная гипобарическая гипоксия

№29. Назвать явления повреждения в организме при отравлении кислородом и азотом.

Отравление кислородом :

1. избыток кислорода вызывает увеличение количества окисленного гемоглобина и снижение количества восстановленного гемоглобина. Именно восстановленный гемоглобин осуществляет транспорт углекислого газа, а снижение его содержания в крови приведет к задержке углекислого газа в тканях - гиперкапнии. Проявляется гиперкапния в виде одышки, покраснения лица, головной боли, судорог и, наконец, - потери сознания.

2. При избытке кислорода усиливаются окислительные процессы в организме и увеличивается образование свободных радикалов, которые повреждают мембраны клеток.

Отравление азотом (сатурация): повышение парциального давления азота→ повышение его содержание в крови → наркозные эффект - эйфория →ослабление внимания, головная боль, головокружение, нарушение координации и потеря сознания, наркотический сон.

№30. Причины и механизм кессонной болезни, меры профилактики в терапии.

Причина: переход из области повышенного в давления в область нормального (десатурация и декомпрессия) → снижение растворимости азота и кислорода в крови

Механизм: азот не успевает диффундировать из крови через легкие наружу, возникает газовая эмболия. Проявления: мышечно-суставные и загрудинные боли, нарушение зрения, кожный зуд, вегетососудистые и мозговые нарушения, поражения периферических нервов.

Профилактика: медленный подъем, гипербарическая оксигенация - вдыхание кислорода под повышенным давлением; использование дыхательных смесей.

№31. Причины, условия электротравмы. Зависимость от функционального состояния организма.

Причина: действие электрического тока. Может быть природный (молния) и технический. Особенности:

Не измерим

Может превращаться в другие виды энергии

Оказывает повреждающее действие через другие предметы

Несоответствие между тяжестью и длительность действия

Условия: параметры тока, время, место действия, исходное состояние организма.

От состояния реактивности организма: снижают резистентность - утомление, ослабление внимания, легкое и умеренное алкогольное опьянение, гипоксия, перегревание, тиреотоксикоз, сердечно-сосудистая недостаточность. Повышают: эмоциональное напряжение, вызванное ожиданием действия тока, состояние наркоза и глубокого (близкого к наркозу) опьянения.

Сопротивление тканей: импеданс складывается из омического и емкостного сопротивления. Наибольшее – кожа (влажная имеет меньшее сопротивление), наименьшее – спинномозговая жидкость.

№32. Зависимость повреждающего действия тока от параметров тока и времени его действия.

Сила тока: переменный ток опаснее. Ток силой 100 мА является смертельно опасным. Переменный ток 50-60 Гц силой 12-25 мА вызывает судороги («неотпускающий»); основная опасность его заключается в «приковывании» пораженного к захваченному им токоведущему предмету.

Напряжение : до 40 В смертельных поражений не вызывает, при напряжении 1000 В летальность достигает 50%, при напряжении 30 000 В - 100%. До 450-500 В опаснее переменный ток, более – постоянный.

Частота переменного тока: патогенный эффект (возникновение фибрилляции желудочков) при 40-60 Гц. Высокочастотный (1 млн Гц) не являются патогенными, но при высоком напряжении (токи Тесла, д"Арсонваля, диатермические токи) они оказывают тепловое действие и применяются с лечебной целью.

Фактор времени: С увеличением времени патогенный эффект возрастает.

№33. Зависимость повреждающего действия электрического тока от путей его прохождения.

Восходящий (анод+ выше катода) постоянный ток опаснее нисходящего, поскольку возбуждение, поступающее из синусового узла, сталкивается с встречной волной электрического тока, что вызывает остановку сердца или фибрилляцию желудочков. При нисходящем токе волна возбуждения, исходящая из синусового узла, усиливается электрическим током, при этом в момент размыкания цепи возможно возникновение фибрилляции сердца. Асинхронное возбуждение мышечных волокон объясняется тем, что после отключения источника электричества исчезающее электромагнитное поле, рассеиваясь в пространстве, будет индуцировать токи различной силы в кардиомиоцитах. В участках сердца, находящихся в центре магнитных линий, будет индуцироваться более сильный ток, а его направление будет таким же, каким оно было в момент размыкания цепи.

№34. Виды и механизмы местного повреждающего действия электрического тока.

Знаки тока, ожоги возникают на местах входа и выхода тока в результате превращения электрической энергии в тепловую (тепло Джоуля-Ленца). Знаки тока появляются на коже, если температура в точке прохождения тока не превышает 120 °С, и представляют собой небольшие образования серовато-белого цвета («пергаментная» кожа), твердой консистенции, окаймленные волнообразным возвышением. В ряде случаев по окружности поврежденной ткани проступает ветвистый рисунок красного цвета, обусловленный параличом кровеносных сосудов.

При температуре в точке прохождения тока свыше 120 °С возникают ожоги : контактные - от выделения тепла при прохождении тока через ткани, оказывающие сопротивление, и термические - при воздействии пламени вольтовой дуги. Последние являются наиболее опасными.

№ 35. Виды и механизмы общего повреждающего действия электрического тока.

Общее действие – электромеханическое, электротермическое и электрохимическое действие. Механизм : возбуждение нервных рецепторов и проводников, скелетной и гладкой мускулатуры, железистых тканей→ возникновение судорог скелетных и гладких мышц→ отрывной переломом и вывихи конечностей, спазмом голосовых связок, остановкой дыхания, АД, непроизвольным мочеиспусканием и дефекацией. Возбуждение нервной системы и органов внутренней секреции приводит к «выбросу» катехоламинов (адреналин, норадреналин).

Электрохимическое действие (электролиз): поляризация клеточных мембран: на одних участках тканей - у А - скапливаются отрицательно заряженные ионы (возникает щелочная реакция, колликвационный некроз), у К скапливаются положительно заряженные ионы (возникает кислая реакция, коагуляционный некроз). Процессы электролиза в кардиомиоцитах вызывают укорочение рефрактерной фазы сердечного цикла, что приводит к нарастающей тахикардии.

Электротермическое – обугливание тканей, жемчужные бусы на костях.

При несмертельной электротравме возникает судорожное сокращение мышц с временной потерей сознания, нарушением сердечной деятельности и (или) дыхания; может наступить клиническая смерть. При своевременном оказании помощи пострадавшие ощущают головокружение, головную боль, тошноту, светобоязнь; могут сохраняться нарушения функций скелетной мускулатуры.

Смерть от остановки дыхания или сердца. Остановка дыхания : 1) поражением дыхательного центра; 2) спазмом позвоночных артерий, снабжающих кровью дыхательный центр; 3) спазмом дыхательной мускулатуры; 4) нарушением проходимости дыхательных путей вследствие ларингоспазма. Остановка сердца : 1) фибрилляции желудочков; 2) спазма коронарных сосудов; 3) поражения сосудодвигательного центра; 4) повышения тонуса блуждающего нерва.

№36. Признаки мнимой смерти и принципы оживление организма при электротравме.

Признаки: потеря сознания, фибрилляция желудочков, поверхностное дыхание.

Принципы терапии: этиотропная, патогенетическая, саногенетическая, симптоматическая.

№37. Перечислить основные виды лучистой энергии, объяснить механизм повреждающего действия инфракрасного излучения.

Виды:

Действие на организм ИК-излучения обусловлено тепловым эффектом. Повышение температуры в результате поглощение инфракрасных лучей тканями вызывает реакции местного (гиперемия, увеличение проницаемости сосудов) и общего характера (интенсификация обмена, терморегуляция). +ожог глаз (катаракта), солнечный удар.

№38. Перечислить основные виды лучистой энергии, объяснить механизм повреждающего действия УФ излучения.

Виды: ионизирующее (электромагнитное – Х и гамма-лучи; корпускулярные – альфа, бета, протоны, нейтроны) и неионизирующее излучение (инфракрасное, УФ, резонансное излучение).

УФ -излучение делится на 3 области: А (длинноволновая 400-320) - загарная – из тирозина образуется меланин; В(средневолновая 320-280 нм) – общестимулирующий эффект – стимуляция обменных и трофических процессов, роста и регенерации, сопротивляемости, образование витамина Д; С(коротковолновая – 280-200 нм) – бактерицидная.

Фотохимический ожог – эритема, волдыри, температуры, головная боль, общее недомогание. Усиливается перекисное окисление липидов (повреждение мембран, распад белков, гибель клетки). Фотоофтальмия – покраснение и отечность конъюнктивы, песок в глазах, жжение, слезотечение, светобоязнь. Возможно обострение хронических процессов. При длительном облучении – рак кожи. +фотосенсибилизаторы, фотоаллергия, солнечный удар.

№ 39. Виды ионизирующего излучения, причины и механизм развития лучевой болезни.

Ионизирующее: электромагнитное – Х и гамма-лучи; корпускулярные – альфа, бета, протоны, нейтроны); источники – внешние и внутренние.

Причина: действие ионизирующего излучения с дозой облучения 1-10 Гр, повреждение ДНК клетки

Условия:

Вид, доза и мощность излучения, проникающая способность, относительная биологическая эффективность

Облучаемая площадь, плотность ионизации, радиочувствительность клеток (наиболее чувствительны – клетки крови, половые, эпителий; наименее – мышцы, нервы и кости)

Длительность облучения

Факторы индивидуальной реактивности

Патогенез: а) первичное действие ионизирующего излучения; б) влияние радиации на клетки; в) действие радиации на целый организм.

Первичное действие проявляется ионизацией, возбуждением атомов и молекул и образованием при этом свободных радикалов – прямое действие радиации, пусковой механизм. Непрямое действие: нарушение структуры ДНК, ферментов, белков свободными радикалами. При окислении ненасыщенных жирных кислот и фенолов первичные радиотоксины, угнетающие синтез нуклеиновых кислот, подавляющие активность различных ферментов, повышающие проницаемость биологических мембран и изменяющие диффузионные процессы в клетке.

Действие ионизирующей радиации на клетки: от временной задержки размножения до их гибели в зависимости от радиочувствительности клетки. Малые дозы вызывают обратимые ингибирование нуклеинового обмена, изменение проницаемости клеточных мембран, возникновение липкости хромосом, образование зерен и глыбок в ядерном веществе, задержка митозов. При больших дозах облучения в клетках наступают летальные изменения - угнетается клеточное дыхание, наблюдается деградация дезоксирибонуклеинового комплекса в ядре.

Действие на организм: местное (лучевые ожоги, некрозы, катаракты) и общим (лучевая болезнь).

Течение лучевых ожогов характеризуется развитием последовательно сменяющихся периодов (ранняя лучевая реакция, скрытое, острое воспаление, восстановление), у больных развиваются лихорадка, высокий лейкоцитоз, тяжелый болевой синдром.

№40. Перечислить периоды костномозговой формы острой лучевой болезни и охарактеризовать картину крови при каждом из них.

По тяжести костномозговая форма (1-10Гр): I - легкой степени (1-2 Гр); II - средней степени (2-4 Гр); III - тяжелой степени (4-6 Гр); IV - крайне тяжелой степени (свыше 6 Гр). Периоды:

  1. Фаза первичной острой реакции: возникает в течение первых минут и часов. Возникают некоторое возбуждение, головная боль, общая слабость. Затем наступают диспепсические расстройства (тошнота, рвота, потеря аппетита), со стороны крови - кратковременный нейтрофильный лейкоцитоз со сдвигом влево, абсолютная лимфоцитопения . Клиника: повышенная возбудимость нервной системы, колебания АД, ритма сердца, усиление секреции катехоламинов. При дозах 8-10 Гр наблюдается развитие шокоподобного состояния с падением артериального давления, кратковременной потерей сознания, повышением температуры тела, развитием поноса. Продолжительность фазы первичной острой реакции 1-3 дня.
  2. Фаза мнимого клинического благополучия : проходят клинически видимые признаки болезни. Длительность от 10-15 дней до 4-5 недель. Кровь: прогрессирует лимфоцитопения на фоне лейкопении, снижается содержание ретикулоцитов и тромбоцитов . В костном мозгу развивается опустошение (аплазия). Могут наблюдаться атрофия гонад, подавление ранних стадий сперматогенеза, атрофические изменения в тонком кишечнике и коже. Неврологическая симптоматика постепенно сглаживается.
  3. Фаза разгара : нарастает слабость, повышается температура тела, появляются кровоточивость и кровоизлияния в кожу, слизистые оболочки, ЖКТ, мозг, сердце и легкие. В результате нарушения обмена веществ и диспепсических расстройств (потеря аппетита и поносы) резко снижается масса тела. Кровь: глубокая лейкопения, тромбоцитопения, выраженная анемия; увеличивается СОЭ; в костном мозгу - картина опустошения с начальными признаками регенерации. Наблюдаются гипопротеинемия, гипоальбуминемия, повышение содержания остаточного азота и снижение уровня хлоридов. Угнетается иммунитет. Продолжительность: от нескольких дней до 2-3 недель. При неоказании помощи возможна смерть.
  4. Фаза восстановления : снижение до нормы температура тела, исчезают геморрагические и диспепсические проявления, со 2-5-го месяца нормализуется функция потовых и сальных желез, возобновляется рост волос. Постепенно происходит восстановление показателей крови в обратном порядке (Э и Гем→ Рет и Тр→ Лим и Лей) и обмена веществ. Продолжительность: от 3-6 месяцев до 1-3 лет, возможен переход в хроническую форму.

Кишечная форма: при облучении в дозах 10-20 Гр, смерть чаще наступает на 7-10-е сутки. Признаки: тошнота, рвота, кровавый понос, повышение температуры тела, могут наблюдаться полная паралитическая непроходимость кишечника и вздутие живота. Развиваются геморрагия и глубокая лейкопения с полным отсутствием лимфоцитов в периферической крови, а также картина сепсиса. Причина смерти: дегидратация организма и необратимый шок.

Токсемическая форма : гемодинамические нарушения в кишечнике и печени, парез сосудов, тахикардия, кровоизлияния, тяжелая интоксикация и отек мозга, олигурия и гиперазотемия. Смерть наступает на 4-7-е сутки.

Церебральная форма: доза выше 80 Гр. Смерть через 1-3 дня, а при действии очень больших доз -

смерть под лучом (также при локальном облучении головы в дозах 100-300 Гр). Признаки: судорожно-паралитический синдром, нарушения крово- и лимфообращения в центральной нервной системе, сосудистого тонуса и терморегуляции, функциональные нарушения пищеварительной и мочевыделительной систем, происходит прогрессивное снижение кровяного давления.

Причина смерти: тяжелые и необратимые нарушения центральной нервной системы, характеризующиеся значительными структурными изменениями, гибелью клеток коры головного мозга и нейронов ядер гипоталамуса.

Хроническая: при длительном облучении организма в малых, но превышающих допустимые дозах.

Начальный период заболевания характеризуется развитием нестойкой лейкопении, признаками вегетативно-сосудистой неустойчивости. Разгар: недостаточность регенерации и изменения в деятельности нервной и сердечно-сосудистой систем. Восстановление: отчетливое преобладание репаративных процессов в наиболее радиочувствительных тканях.

1 степень: нервно-регуляторные нарушения, нестойкая лейкопения, тромбоцитопения

2 степень: нарушения нервной, ССС, пищеварительной систем. Лейкоцитопения, лимфоцитопения, в костном мозге гипоплазия

3 степень: анемия, атрофические процессы в ЖКТ, инфекционно-септические осложнения, геморрагический синдром, нарушения кровообращения.

Последствия:

  1. Неопухолевые: сокращение продолжительности жизни, гипопластические состояния в кроветворной ткани, слизистых; склеротические процессы (цирроз печени, нефросклероз, атеросклероз, лучевые катаракты), дисгормональные состояния (ожирение, гипофизарная кахексия, несахарное мочеизнурение).
  2. Опухолевые - опухоли и лейкозы

№41. Привести примеры повреждающего действия химических факторов как причины.

патология обмена билирубина →желтуха

Серная кислота →химический ожог

Алкоголизм (этиловый спирт)→цирроз печени

Асбест→асбестоз (пневмокониоз)

№42. Привести примеры повреждающих действий биологических факторов как причины.

Малярийный плазмодий→малярия (гемолиз)

Гемолитический стрептококк→гломерулонефрит

Бледная трепонема→сифилис

Клостридии→ботулизм

№43. Факторы, действующие на организм человека в условиях космического полета, механизм перегрузок, кинетозов, невесомости.

Факторы:

1) ускорения и перегрузки

2) невесомость;

Изменения ритма суток, сенсорная изоляция, замкнутость, шум, вибрация, ионизирующая радиация

Перегрузка - это сила инерции, возникающая при движении с ускорением, действует в направлении, противоположном движению. Отражает во сколько раз при данном ускорении возрастает вес тела по сравнению с весом в условиях обычной земной гравитации. Перегрузки различают по величине и длительности (длительные - более 1 с, ударные - менее 1 с), скорости и характеру нарастания (равномерные, пикообразные). По соотношению вектора к продольной оси тела человека различают перегрузки: перегрузки продольные положительные (в направлении от головы к ногам), продольные отрицательные (от ног к голове), поперечные положительные (грудь-спина), поперечные отрицательные (спина-грудь), боковые положительные (справа налево) и боковые отрицательные (слева направо).

Механизм:

  1. перераспределение массы крови в сосудистом русле: переполнение одних участков, ишемия других, изменяются возврат крови к сердцу и величина сердечного выброса, реализуются рефлексы с барорецепторных зон
  2. нарушение оттока лимфы
  3. смещение органов и мягких тканей.

Легче переносятся поперечные положительные перегрузки (в направлении грудь-спина, 5-8ед). При превышении пределов нарушается функция внешнего дыхания, изменяется кровообращение в сосудах легких, резко учащаются сокращения сердца. При возрастании величины поперечных перегрузок возможны механическое сжатие отдельных участков легких, нарушение кровообращения в малом круге, снижение оксигенации крови. При этом в связи с углублением гипоксии учащение сокращений сердца сменяется замедлением.

При продольных перегрузках (в направлении от головы к ногам 4-5 ед) затрудняется возврат крови к сердцу, уменьшаются кровенаполнение полостей сердца и соответственно сердечный выброс, снижается кровенаполнение сосудов краниальных отделов тела и головного мозга. На снижение артериального давления в сонных артериях реагирует рецепторный аппарат синокаротидных зон. В результате возникает тахикардия, в ряде случаев появляются нарушения ритма сердца. При

превышении предела наблюдаются выраженные аритмии сердца, нарушения зрения в виде пелены, нарушения дыхания, появляются боли в эпигастральной области.

Продольные отрицательные перегрузки (в направлении ноги-голова, 2 ед). В этих случаях происходит переполнение кровью сосудов головы. Повышение артериального давления в области рефлексогенных зон сонных артерий вызывает рефлекторное замедление сокращений сердца. При превышении пределов индивидуальной устойчивости возникают головная боль, расстройства зрения в виде пелены перед глазами, аритмии сердца, нарушается дыхание, возникает предобморочное состояние, а затем происходит потеря сознания.

Невесомость (состояние «нулевой гравитации»). Статическая невесомость: находясь в космосе на большом удалении от Земли, тело не испытывает земного притяжения. Динамическая невесомость возникает в условиях, когда действие силы земного притяжения уравновешивается противоположно направленными центробежными силами. В орбитальном космическом полете тела движутся в основном под влиянием инерционной силы, которая уравновешивается силой притяжения Земли.

Кровообращение: соотношение фильтрации и реабсорбции изменяется. Это проявляется в возрастании абсорбции жидкости на уровне капилляров и венул и является одним из факторов, вызывающих в начале полета возрастание объема циркулирующей крови и обезвоживание тканей определенных регионов организма (преимущественно ног). Высота столба жидкости перестает оказывать влияние на давление и в мелких, и в крупных кровеносных сосудах. В условиях невесомости оно зависит от нагнетательной и присасывающей функций сердца, эластических свойств стенок сосудов и давления окружающих тканей. Отток крови из вен головы в условиях невесомости затруднен. Это вызывает увеличение объема крови в сосудах головы, отечность мягких тканей лица, иногда головную боль.

Сердце: изменяется соотношение нагрузки на левые и правые отделы сердца. В результате изменяются фазы сердечного цикла, биоэлектрическая активность миокарда, диастолическое кровенаполнение полостей сердца, переносимость функциональных проб. В раннем периоде пребывания в невесомости существенное перераспределение крови в сосудистом русле и изменение кровенаполнения полостей сердца воспринимаются афферентными системами организма как информация об увеличении объема циркулирующей крови и вызывают рефлексы, направленные на сброс жидкости.

ВСО: уменьшением секреции антидиуретического гормона и ренина, а затем и альдостерона, а также увеличением почечного кровотока, возрастанием клубочковой фильтрации и снижением канальцевой реабсорбции.

Мышцы: исчезает нагрузка на позвоночник, прекращается давление на межпозвоночные хрящи, становятся ненужными статические усилия антигравитационных мышц, снижается общий тонус скелетной мускулатуры, уменьшаются усилия на перемещение тела и предметов. При отсутствии нагрузки на кости скелета снижается минеральная насыщенность костной ткани, наблюдаются выход кальция из костей и общие потери кальция, возникают генерализованные изменения белкового, фосфорного и кальциевого обмена.

Кинетоз (болезнь движения): Информация от различных структур вестибулярного аппарата рассогласована (в условиях невесомости сохраняется функция полукружных каналов, реагирующих на угловые ускорения при быстрых движениях головы, и выпадает функция отолитов). В ранние сроки полета изменения состояния сенсорных систем могут сопровождаться нарушениями пространственной ориентации, иллюзорными ощущениями перевернутого положения тела, трудностями координации движения.

Иммунологическая реактивность: снижение функциональной активности клеточных популяций, относящихся к Т-системе иммунитета, и в некоторых случаях появляются признаки сенсибилизации к микробным и химическим аллергенам.

Проявления гипокинезии: 1) изменения системной гемодинамики, снижение нагрузки на миокард, детренированность сердечно-сосудистой системы, ухудшение переносимости ортостатических проб; 2) изменения регионарного кровообращения (в бассейнах сонных и вертебральных артерий), что вызвано затруднением венозного оттока из сосудов головы и соответствующими компенсаторными изменениями регуляции сосудистого тонуса; 3) изменения объема циркулирующей крови и уменьшение эритроцитарной массы; 4) изменения водноэлектролитного обмена (потеря калия); 5) изменения состояния центральной нервной системы и вегетативно-сосудистых сдвигов, явления вегетативной дисфункции и астенизации; 6) частичная атрофия мышц и нервно-мышечные нарушения; 7) разбалансированность регуляторных систем.

№44. Какую роль играют социальные факторы в происхождении болезни человека. Примеры.

Социальные факторы играют роль условия, либо роль причины. Особенность социального факторы как причины является его непрямое опосредованное действие. Например, стресс является причиной язвенной болезни желудка и двенадцатиперстной кишки. Условие труда →сколиоз, нарушение зрения. Нарушение рациональное питание (недостаток витаминов) приводят к развитию авитаминозов. Условие: недостаток вит. С→снижение иммунитете→ условие для развития простудных заболеваний. Несоблюдение режима труд/отдых.

№45. Определения общий патогенез, причинно-следственные связи, начальное звено, главное звено.

Общий патогенез общие механизмы возникновения болезни, пат. процессов, реакций и состояний. Складывается из механизмов повреждения и механизмов защиты. Свойства: начальное звено, ведущее звено, порочный круг, причинно-следственная связь, местное и общее, специфическое и неспецифическое.

Начальное звено – первичное повреждение организма при действии повреждающего фактора. Например, нач. звено горной болезни – снижение парциального давления во вдыхаемом воздухе и верхних дыхательных путях; кровопотере – разрыв сосуда; повреждение клетки – действие гемолитического яда.

Главное звено – механизм, которые определяет развитие последующих механизмов повреждения. Например, горная болезнь – гипоксия; острая кровопотеря – гиповолемия;

Причинно-следственная связь – каждый предыдущий фактор является причиной последующего (триада Вирхова) : первичные пирогенны →вторичный пирогены→действуют на гипоталамус →лихорадка

Порочный круг: последующий фактор усиливает действие предыдущего. Гиповолемия→включение симпато-адреналовой системы→спазм периферических сосудов и централизация кровообращения →нарушение венозного возврата →сердечная недостаточность → ← артериальная гипотензия и гипоксемия

Местное и общее : фурункул/фурункулез, ожог/ожоговая болезнь; обморожение/гипотермия, воспаление/воспалительная реакция

Специфическое и неспецифическое (типовые нарушения)

№46. Определение саногенез, его роль в патогенезе и исходе.

Саногенез - это динамический комплекс защитно-приспособительных механизмов физиологического и патофизиологического характера, развивающийся в результате воздействия на организм чрезвычайного раздражителя, функционирующий на протяжении всего патологического процесса (от предболезни до выздоровления) и направленный на восстановление нарушенной саморегуляции организма.

№47. Определение «повреждение клетки», причины повреждения, классификация.

Клетка – структурная саморегулирующаяся и самовоспроизводящаяся система. Повреждение клетки – это генетически детерминированные или приобретённые изменения метаболизма, физико-химических параметров, конформации макромолекул, структуры клетки, ведущие к нарушению её функций и жизнедеятельности.

Причины повреждения клетки могут быть

1. По происхождению:

а) экзогенные и эндогенные;

б) наследственные и приобретённые;

в) инфекционные и неинфекционные;

2. По характеру:

Физические

Химические

Механические

Биологические

Социальные

3. В зависимости от действия повреждающего фактора

Прямое повреждающее воздействие;

Опосредованное (через нервную систему, изменения кровоснабжения клетки, биологически активные вещества, отклонения рН среды)

Физический фактор:

  1. Высокая температура (45-46˚С и выше вызывает повреждение мембраны клетки, денатурация белка);
  2. Низкая температура (температура биологического нуля – 24-25˚С блокирует все жизненно важные процессы в клетке; а т.ж. кристаллизация воды в клетке приводит к механическому повреждению структуры клетки); набухание и разрыв
  3. Ионизирующее излучение (прямое воздействие на нуклеиновые кислоты и белки, вызывают радиолиз воды с образованием активных радикалов, с другой стороны активируют перекисное окисление липидов и образование вторичных радиотоксинов, которые нарушают целостность мембран клетки и её органелл)
  4. Электрохимическое действие – коагуляционный и колликвационный некроз

Биологический фактор

  1. Онкогенные вирусы интегрируются с ДНК соматической кл-ки, нарушая генетический код
  2. Малярийный плазмодий, проникая в клетку (эритроцит) и размножаясь там, нарушает целостность клетки и её функцию
  3. Микроорганизмы образуют экзо и эндотоксины
  4. При аллергии и аутоаллергии повреждение мембран кл-ки, вызываемое иммунным комплексом - повышение проницаемости, цитолиз кл-ки
  5. Стрептококк→повреждение клубочков почки

Механический фактор

  1. Укол, разрез, удар – вызывает повреждение мембран клетки, внутриклеточных органелл
  2. Если сила незначительная, то нарушение начинается с повышения проницаемости мембраны клетки с последующими расстройствами водно-электролитного баланса, энергетического обмена

Социальный фактор: стресс опосредованно ч/з НС – активация симпато-адреналовой и гипоталамо-гипофизарно-надпочечниковой системы → выброс адреналина→изменение кровотока → язвы в желудке

Химический фактор:

  1. Кислоты, щелочки, соли →некроз
  2. Канцерогены →нарушение генома
  3. Ферменты при панкреатите → лизис белков
  4. Цианистый калий → ингибирование цитохромоксидазы и нарушение тканевого дыхания

№48. Специфические механизмы повреждения клетки.

Зависит от: вида повреждающего фактора, вида клеток, из которого состоит орган (система), структурной единицы, на которую действует повреждающий фактор. Например, цианистый калий действует на клетки нервной системы, ингибирует цитохромоксидазу и тканевое дыхание (влияет на ферментные структуры).

Фенилгидразин вызывает гемолитическую анемию (действует на клетки крови), усиление свободнорадикального окисления (нарушение мембранного аппарата и дисбаланс ионов и воды)

№49. Неспецифические механизмы повреждения.

Расстройства энергетического обеспечения клетки.

Снижение транспорта О2 и субстратов окисления через цитолемму;

Нарушение депонирования субстратов окисления и их мобилизации;

Уменьшение процессов окисления;

Разобщение окислительного фосфорилирования и свободного окисления;

Нарушение транспорта макроэргов;

Снижение утилизации макроэргов.

На уровне клетки повреждающие факторы "включают" нес-
колько патогенетических звеньев:
I. Нарушение энергетического обеспечения процессов,
протекающих в клетке:
1. Снижение интенсивности и (или) эффективности процес-
сов ресинтеза АТФ.
2. Нарушение транспорта энергии АТФ.
3. Нарушение использования энергии АТФ.
II. Повреждение мембранного аппарата и ферментных сис-
тем клетки;

1.Чрезмерная интенсификация свободнорадикальных реакций и перекисного окисления липидов (ПОЛ).

2.Значительная активация гидролаз (лизосомальных, мембраносвязанных, свободных).

3.Внедрение амфифильных соединений в липидную фазу мембран и их детергентное действие.

4.Торможение процессов ресинтеза поврежденных компонентов мембран и синтеза их заново.

5.Нарушение конформации молекул белка, липопротеидов, фосфолипидов.

6.Перерастяжение и разрыв набухших клеток и их органелл.
III. Дисбаланс ионов и жидкости в клетке:

1.Изменение соотношения отдельных ионов в гиалоплазме.

2.Изменение трансмембранного соотношения ионов.

3.Гиперпигментация клеток.

4.Дегидратация клеток.

IV. Нарушение генетической программы клетки и(или) ме-
ханизмов ее реализации:
А. Нарушение генетической программы:
1.Изменение биохимической структуры генов.
2.Дерепрессия патогенных генов.
3.Репрессия "жизненно важных" генов.
4.Внедрение в геном фрагмента чужеродной ДНК с пато-
генными свойствами.
Б. Нарушение реализации генетической программы:
1.Расстройство митоза:

Повреждение хромосом

Повреждение структур, обеспечивающих митотический цикл

Нарушение процесса цитотомии

2.Нарушение мейоза.
V. Расстройство внутриклеточных механизмов регуляции
функции клеток:
1. Нарушение рецепции регуляторных воздействий.
2. Нарушение образования вторичных посредников.
3. Нарушение фосфорилирования протеинкиназ.

Клеточные и внеклеточные механизмы повреждения клетки

Непосредственной причиной повреждения может стать нарушения механизмов трофики – совокупность клеточных или внеклеточных механизмов, определяющих метаболизм и структурную организацию клетки, которые необходимы для специализированной функции.



Клеточные механизмы обеспечиваются структурной организацией клетки и ее ауторегуляцией. Это значит, что трофика клетки в значительной мере является свойством самой клетки как сложной саморегулирующейся системы.

Жизнедеятельность клетки также обеспечивается «окружающей средой» и регулируется с помощью ряда систем организма. Поэтому внеклеточные механизмы трофики располагают транспортными (кровь, лимфа, микроциркуляторное русло) и интегративными (нейро­эндокринные, нейрогуморальные) системами ее регуляции.

Расстройства ауторегуляции клетки могут быть вызваны различными факторами (гиперфункция, токсические вещества, радиация, наследственная недостаточность или отсутствие фермента и т. д.). Большую роль придают полому генов - рецепторов, осуществляющих «координированное торможение» функций различных ультраструктур. Нарушение ауторегуляции клетки ведет к энергетическому ее дефициту и к нарушению ферментативных процессов в клетке. Ферментопатия, или энзимопатия (приобретенная или наследствен­ная), становится основным патогенетическим звеном и выражением дистрофии (один из видов альтерации) при нарушениях клеточных механизмов трофики.

Нарушения функции транспортных систем , обеспечивающих метаболизм и структурную сохранность тканей (клеток), вызывают гипоксию, которая является ведущей в патогенезе дисциркуляторных дистрофий.

При расстройствах эндокринной регуляции трофики (тиреотоксикоз, диабет, гиперпаратиреоз и т. д.) можно говорить об эндокринных, а при нарушении нервной регуляции трофики (нарушенная иннервация, опухоль головного мозга и т. д.) о нервных или церебральных дистрофиях.

При дистрофиях в клетке и (или) межклеточном веществе накапливаются различные продукты обмена (белки, жиры, углеводы, минералы, вода), которые характеризуются количественными или качественными изменениями в результате нарушения ферментативных процессов. При дистрофиях в клетке и (или) межклеточном веществе накапливаются различные продукты обмена (белки, жиры, углеводы, минералы, вода), которые характеризуются количественными или качественными изменениями в результате нарушения ферментативных процессов. Особенности патогенеза внутриутробных повреждений определяются непосредственной связью их с болезнями матери.