Нейрон имеет длинные отростки и короткие. Биология для студентов

Основная функция нервной системы – передача информации с помощью электрических стимулов. Для этого необходимо:

1. Обмен химическими веществами с окружающей средоймембрана –длительные информационные процессы.

2. Быстрый обмен сигналами – специальные участки на мембране –синапсы

3. Механизм быстрого обмена сигналами между клетками – специальные химические веществамедиаторы , выделяемые одними клетками и воспринимаемые другими в синапсах

Все предшественники нейронов секретируют ацетилхолин, который действует на никотиновые рецепторы. Большинство симпатических нейронов после гангрены выделяют норадреналин, который действует на адренергические рецепторы; пост-ганглиозные парасимпатические нейроны выделяют ацетилхолин, который действует на мускариновые рецепторы; Симпатические пути происходят из поясничных областей грудного и спинного мозга, и большинство симпатических ганглиев расположены вблизи спинного мозга. Ганглии последних находятся вблизи тканей-мишеней.

Симпатическая система контролирует полезные функции, особенно в стрессовых и чрезвычайных ситуациях. Парасимпатическая система доминирует во время отдыха и пищеварения. Память - это психический процесс, который включает в себя прививание, распознавание и воспроизведение ощущений, чувств, движений, прошлых знаний. Таким образом, он играет жизненно важную роль как в жизни человека, так и в общественной жизни человека, но это сложный процесс, исследователи нуждаются в более чем столетии для разработки объяснения основных биохимических механизмов памяти и однако они еще не были полностью выяснены.

4.Клетка отвечает на изменения в синапсах, расположенных на коротких отростках – дендритах с помощью медленных изменений электрических потенциалов

5. Клетка передает сигналы на большие расстояния с помощью быстрых электрических сигналов по длинным отросткам – аксонам

Аксон - в нейроне один, имеет протяженное строение, проводит быстрые электрические импульсы от тела клетки

Можно сказать, что память имеет несколько фаз. Когда мозг получает новую информацию, он изначально превращается в кратковременную память, которая по определению является временной, и информация может быть забыта через несколько часов или даже через несколько секунд. Краткосрочная память может быть преобразована в долгосрочную память, если ей уделяется повышенное внимание или она связана со стрессовым или эмоциональным переживанием.

Различные типы информации направлены в разные области коры. Например, свет будет подметать конусы и клетки канала в сетчатке, что преобразует стимул в нервный импульс, распространяющийся через зрительный нерв в таламус, а затем в зрительную кору. С другой стороны, звуки будут проходить через таламус, достигая уровня слуховой коры.

Дендриты - может быть много, ветвятся, короткие, проводит медленные градуальные электрические импульсы к телу клетки

Нервная клетка, или нейрон, состоит из тела и отростков двух видов. Тело нейрона представлено ядром и окружающей его областью цитоплазмы. Это метаболический центр нервной клетки; при его разрушении она погибает. Тела нейронов располагаются преимущественно в головном и спинном мозге, т. е. в центральной нервной системе (ЦНС), где их скопления образуют серое вещество мозга. Скопления тел нервных клеток за пределами ЦНС формируют нервные узлы, или ганглии.

Большинство импульсов затем приводятся в гиппокамп, в нижней части средней части мозга. Гиппокамп перенаправляет информацию для долговременной памяти в кору, создавая связь между двумя типами памяти и создавая серию связей между различными типами полученной информации. Этот перенос из гиппокампа в кору и наоборот повторяется до тех пор, пока информация не будет исправлена.

Небольшая часть импульсов ведет еще один путь на пути к трансформации кратковременной памяти в долговременную память, примером которой является информация о различных приобретенных опытах, которые не пройдут через гиппокамп. Короткое формирование памяти связано с изменением ранее существовавших нейронных белков, в то время как ее превращение в долговременную память требует экспрессии генов для синтеза новых белков.

Короткие, древовидно ветвящиеся отростки, отходящие от тела нейрона, называются дендритами. Они выполняют функции восприятия раздражения и передачи возбуждения в тело нейрона.

Самый мощный и длинный (до 1 м) неветвящийся отросток называется аксоном, или нервным волокном. Его функция состоит в проведении возбуждения от тела нервной клетки к концу аксона. Он покрыт особой белой липидной оболочкой (миелином), выполняющей роль защиты, питания и изоляции нервных волокон друг от друга. Скопления аксонов в ЦНС образуют белое вещество мозга. Сотни и тысячи нервных волокон, выходящих за пределы ЦНС, при помощи соединительной ткани объединяются в пучки - нервы, дающие многочисленные ответвления ко всем органам.

Рецепторы откроют натриевые каналы, через которые он войдет в клетку, выполняя деполяризацию. Деполяризация оказывает влияние на другую группу постсинаптических глутаматных рецепторов, которые контролируют кальциевые каналы. Изначально ионы кальция активируют серию белков в структуре постсинаптического нейрона, включая кальмодулин.

Как только импульс распространяется, постсинаптические нейроны высвобождают молекулы глутамата, которые диффундируют из клетки или реабсорбируются пресинаптическими нейронами. Таким образом, постсинаптический нейрон возвращается к покою, подвергая воздействию ионы натрия и восстанавливая ионную концентрацию, которая отрицательно влияет на внутреннюю часть клетки.

От концов аксонов отходят боковые ветви, заканчивающиеся расширениями - аксоппыми окончаниями, или терминалями. Это зона контакта с другими нервными, мышечными или железистыми метками. Она называется синапсом, функцией которого является передача возбуждения. Один нейрон через свои синапсы может соединяться с сотнями других клеток.

Но что происходит с информацией, которая не хранится в течение длительного времени? Механизмы забывания также довольно противоречивы. Некоторые исследователи считают, что в некоторых частях мозга существуют молекулярные механизмы, снижающие синаптическую активность.

Память также включает в себя другие более сложные механизмы, чем описано ранее. Кроме того, этот процесс индуцирует ацетилирование, фосфорилирование или фосфоацетилирование белков гистонов, что связано с краткосрочными изменениями в консолидации памяти.

Память - это психическая функция, которая обеспечивает стабильность личности человека, является субстратом способности человека знать, поскольку она обеспечивает фиксацию, сохранение и обновление предыдущего опыта. Память обеспечивает непрерывность между предыдущим и настоящим опытом.

По выполняемым функциям различают нейроны трех видов. Чувствительные (центростремительные) нейроны воспринимают раздражение от рецепторов, возбуждающихся под действием раздражителей из внешней среды или из самого организма человека, и в форме нервного импульса передают возбуждение с периферии в ЦНС.Двигательные (центробежные) нейроны посылают нервный сигнал из ЦНС мышцам, железам, т. е. на периферию. Нервные клетки, воспринимающие возбуждение от других нейронов и передающие его также нервным клеткам, - это вставочные нейроны, или интернейроны. Они располагаются в ЦНС. Нервы, в состав которых входят как чувствительные, так и двигательные волокна, называются смешанными.

Механизмы памяти Сегодня в механизмах памяти существуют два процесса: кратковременная память и долговременная память. Краткосрочная или временная память хранится в реверберирующих схемах, состоящих из нейронных цепей, которые активируют друг друга. Долгосрочная память, хотя функционально функциональная, является непрерывностью предыдущей, имеет другой механизм. В процессе долговременной памяти, которая представляет собой долговременное хранение информации в нейронах центральной нервной системы, участвуют нуклеиновые кислоты, в которых распознается способность хранения информации.


Аня: Нейроны, или нервные клетки, являются строительными блоками мозга. Хотя они имеют те же гены, то же общее строение и тот же биохимический аппарат, что и другие клетки, они обладают и уникальными особенностями, которые делают функцию мозга совершенно отличной от функций, скажем печени. Полагают, что мозг человека состоит из 10 в 10-й нейронов: примерно столько же, сколько звезд в нашей Галактике. Не найдется и двух нейронов, одинаковых по виду. Несмотря на это, их формы обычно укладываются в небольшое число категорий, и большинству нейронов присущи определенные структурные особенности, позволяющие выделить три области клетки: клеточное тело, дендриты и аксон.

Характерной особенностью долговременной памяти является то, что при развитии мозга, когда активен процесс биосинтеза нуклеиновой кислоты и белка, возможности хранения информации максимальны. С возрастом уменьшается длительность хранения. Мерклер считает, что память мозга связана с образованием белка с новой конформацией, информационным белком.

Недостаточная память. В зависимости от функциональных характеристик памяти обучение требует наличия ряда биологических условий для обеспечения адекватного метаболизма нейронов, включая рациональное питание, сон-бодрствование, определенное эмоциональное напряжение, избегание стимулов вредные, другими словами, определенную атмосферу физиологического и психологического комфорта. Следует отметить, что существует огромная разница между случайными лапсусами и такими заболеваниями, как старческое слабоумие.

Клеточное тело - сома, содержит ядро и биохимический аппарат синтеза ферментов и разнообразных молекул, необходимых для жизнедеятельности клетки. Обычно тело имеет приблизительно сферическую или пирамидальную форму, размерами от 5 до 150 мкм в диаметре. Дендриты и аксон - отростки, отходящие от тела нейрона. Дендриты представляют собой тонкие трубчатые выросты, которые многократно ветвятся, образуя как бы крону дерева вокруг тела нейрона (dendron-дерево). По дендритам нервные импульсы поступают к телу нейрона. В отличие от многочисленных дендритов, аксон - единственный и отличается от дендритов как по строению, так и по свойствам своей наружной мембраны. Длина аксона может достигать одного метра, он практически не ветвится, образуя отростки лишь на конце волокна, его название происходит от слова ось (ass-ось). По аксону нервный импульс уходит из тела клетки и передается другим нервным клеткам либо исполнительным органам - мышцам и железам. Все аксоны заключены в оболочку из шванновских клеток (вид глиальных клеток). В некоторых случаях шванновские клетки просто окутывают аксон тонким слоем. Во многих же случаях шванновская клетка закручивается вокруг аксона, образуя несколько плотных слоев изоляции, называемой миелином. Миелиновая оболочка прерывается примерно каждый миллиметр по длине аксона узкими щелями - так называемыми перехватами Ранвье. В аксонах, имеющих оболочку такого типа, распространение нервного импульса, происходит путем его перескакивания от перехвата к перехвату, где внеклеточная жидкость оказывается в непосредственном контакте с клеточной мембраной. Такое проведение нервного импульса называется сальтотропным. Эволюционный смысл миелиновой оболочки, по-видимому, состоит в экономии метаболической энергии нейрона. Как правило, миелинизированные нервные волокна проводят нервные импульсы быстрее, чем немиелинизированные.

Потеря потери памяти - это не сама болезнь, но с ней мы не должны жить. Среди основных причин дефицита памяти высокое кровяное давление является основным фактором риска развития атеросклероза с уменьшением или полным нарушением кровотока в определенных областях тела, включая мозг, что приводит к потере памяти, афазии или дезориентации во времени и пространстве. Поддержание уровня холестерина на удобном уровне помогает поддерживать лучшую память и здоровье сердечно-сосудистой системы. Курение способствует накоплению холестерина в кровеносных сосудах, с препятствием к кровообращению, повреждению внутренних стенок артерий и возникновению сердечно-сосудистых заболеваний и проблем с памятью.

По количеству отростков нейроны делятся на униполярные, биполярные и мультиполярные.

По строению клеточного тела нейроны подразделяются на звездчатые, пирамидальные, зернистые, овальные и т.д.

Основной единицей нервной системы является нейрон - специализированная клетка, передающая нервные импульсы или сигналы другим нейронам, железам и мышцам. Понимать работу нейронов важно потому, что, без сомнения, именно в них таятся секреты функционирования мозга и, соответственно, секреты человеческого сознания. Нам известна их роль в передаче нервных импульсов, и мы знаем, как работают некоторые нервные механизмы; но мы только начинаем узнавать об их более сложных функциях в процессах памяти, эмоций и мышления.

Алкоголь, потребляемый многократно и в больших количествах увеличивает уровни триглицеридов, увеличивает риск сердечно-сосудистых заболеваний: гиперхолестеринемию, атеросклероз, проблемы с памятью, гипертонию, ишемическую болезнь сердца, инфаркт миокарда. Чрезмерное потребление алкоголя может влиять на атерогенный фактор несколькими механизмами: повышенным содержанием жиров и мочевой кислоты в крови, повышенной секрецией инсулина после тенденции к избыточному потреблению и, следовательно, ожирению, усилению секреции катехоламина, вызванию истинного «стресса», акцентуации нарушения свертываемости крови, появление высокого кровяного давления, а иногда и диабет.

В нервной системе существует два типа нейронов: очень мелкие нейроны, известные как локальные нейроны, и более крупные нейроны, называемые макронейронами. Хотя большинство нейронов являются локальными, мы лишь недавно начали понимать, как они функционируют. Фактически на протяжении долгого времени многие исследователи полагали, что эти крохотные нейроны вовсе не являются нейронами или что они являются незрелыми и неспособными к передаче информации. Сегодня мы знаем, что на самом деле локальные нейроны передают сигналы другим нейронам. Однако они обмениваются сигналами преимущественно с соседними нейронами и не передают информацию на большие расстояния в пределах организма, как это делают макронейроны.

Естественное лечение для плохой памяти. Чтобы улучшить память, необходимо объединить некоторые упражнения памяти с некоторыми изменениями образа жизни. Мозг подобен любому другому телу человеческого тела, тем больше он проявляется, тем сильнее он становится. Активные люди формируют дополнительные нейронные связи, другими словами, у них есть более богатый резервуар мозговых цепей, поэтому они с большей вероятностью будут держать свои мысли острыми. Поэтому важно, чтобы ум был активным, например, посредством упражнений с памятью: чтение книг с интересными темами, отключение кроссвордов, упражнения памяти или любая другая деятельность, которая удерживает ум занятым.

С другой стороны, макронейроны были детально изучены, и поэтому наше внимание будет сосредоточено на этих нейронах. Хотя макронейроны значительно различаются по своим размерам и внешнему виду, все они обладают некоторыми общими характеристиками (см. рис. 2.1) От тела клетки отходит множество коротких отростков, называемых дендритами (от греческого дендрон - дерево). К дендритам и телу клетки поступают нервные импульсы от соседних нейронов. Эти сообщения передаются другим нейронам (или мышцам и железам) через тонкое трубчатое удлинение клетки, которое называется аксоном. Окончание аксона делится на ряд тонких веточек, разветвлений, на концах которых имеются небольшие утолщения, называемые синаптическими окончаниями.

Ходьба, езда на велосипеде и другие формы упражнений увеличивают поток крови по всему телу, включая мозг. Регулярные аэробные упражнения также защищают от таких заболеваний, как инсульт, диабет и высокое кровяное давление, болезни, которые вызывают проблемы с памятью. Люди, которые часто находятся в нервном напряжении или тревожном состоянии, имеют более высокий уровень гормонального стресса, гормоны, которые со временем могут влиять на область мозга, ответственную за память. Стресс нельзя полностью избежать, но он может быть сбалансирован с расслабляющими, приятными действиями, которые снижают фактор стресса.

Рис. 2.1.

Стрелками показано направление движения нервного импульса. Некоторые аксоны разветвляются. Эти ответвления называются коллатералями. Аксоны многих нейронов покрыты изолирующей миелиновой оболочкой, что позволяет увеличить скорость передачи нервного импульса.

На самом деле синаптическое окончание не касается возбуждаемого им нейрона. Между синаптическим окончанием и телом или дендритом воспринимающей клетки существует небольшой промежуток. Такое сопряжение называется синапсом, а сам промежуток называется синаптической щелью. Когда нервный импульс, проходя по аксону, достигает синаптического окончания, он запускает выделение химического вещества, называемого нейромедиатором (или просто медиатором). Медиатор проникает через синаптическую щель и стимулирует следующий нейрон, передавая тем самым сигнал от одного нейрона к другому. Аксоны от очень многих нейронов синаптически контактируют с дендритами и телом клетки отдельного нейрона (рис. 2.2).

Люди с депрессией концентрируются тяжелее, чувствуют себя усталыми и апатичными. Мозгу нужен сон, во время которого он работает с информацией, собранной в течение дня, поэтому необходимо и здорово спать по меньшей мере 8 часов в сутки. Поддержание холестерина в нормальных пределах приводит к значительному ухудшению памяти.

Поскольку 85% мозговой структуры находится в головном мозге, необходимо, чтобы его здоровье потребляло не менее 2 литров воды в день. В отсутствие достаточного количества воды мозг принимает иглу, что приводит к усталости и раздражению памяти. Информация о соотношении потребления алкоголя и памяти очень категорична, даже в небольших количествах, алкоголь вреден для памяти, препятствуя передаче и консолидации информации в банке данных о мозге. После значительного потребления алкоголя, память, концентрация и способность к обучению впоследствии затрагиваются до 72 часов.


Рис. 2.2.

Множество различных аксонов, каждый из которых многократно разветвляется, синаптически контактируют с дендритами и телом клетки отдельного нейрона. Каждое концевое ответвление аксона имеет утолщение, которое называется синаптическим окончанием и содержит химическое вещество, высвобождаемое и передаваемое нервным импульсом через синапс к дендритом или телу клетки воспринимающего нейрона.

Длительное злоупотребление алкоголем может нанести постоянный вред связям между мозговыми нервными клетками, что приводит к необратимому повреждению памяти, изменениям личности и деменции. Энергия и память - Натуральный продукт, содержащий: холин, экстракт гуараны, лецитин, витамин С, витамин Е, магний, цинк, селен. Энергия и память оживают физически и умственно, поэтому людям, которые выполняют интеллектуальную работу, требуются много внимания и силы сосредоточения, студенты и студенты во время экзаменов, люди с обязанностями и те, кто подвергается стрессу, в устойчивой физической работе.

Хотя все нейроны обладают этими общими признаками, они весьма разнообразны по форме и величине (рис. 2.3). У нейрона спинного мозга аксон может достигать 3-4 футов длины и идти от конца позвоночника до мышц большого пальца ступни; нейрон головного мозга может иметь размер всего лишь в несколько тысячных долей дюйма.

Рис. 2.3.

Аксон нейрона спинного мозга может достигать нескольких футов длины (на рисунке показан не полностью).

В зависимости от выполняемых ими общих функций нейроны делятся на три категории. Сенсорные нейроны передают импульсы от рецепторов в центральную нервную систему. Рецепторы - это специализированные клетки органов чувств, мышц, кожи и суставов, способные обнаруживать физические или химические изменения и преобразовывать их в импульсы, проходящие по сенсорным нейронам. Моторные нейроны несут сигналы, выходящие из головного или спинного мозга, к исполнительным органам, т. е. к мышцам и железам. Промежуточные нейроны получают сигналы от сенсорных нейронов и посылают импульсы к другим промежуточным нейронам и к моторным нейронам. Промежуточные нейроны обнаружены только в головном мозге, глазах и спинном мозге.

Нерв - это пучок длинных аксонов, принадлежащих сотням или тысячам нейронов. Один нерв может содержать аксоны как от сенсорных, так и от моторных нейронов.

Помимо нейронов в нервной системе есть множество клеток, не являющихся нервными, но рассеянных между - и часто вокруг - нейронов; их называют глиальными клетками. Количество глиальных клеток превосходит число нейронов в 9 раз, и они занимают больше половины объема мозга. Их название (от греческого glia - клей) определяется одной из их функций - закреплением нейронов на их местах. Кроме того, они вырабатывают питательные вещества, необходимые для здоровья нейронов, и как бы «ведут хозяйство», очищая нейрональную среду (на синаптических участках), тем самым поддерживая сигнальную способность нейронов. Бесконтрольное разрастание глиальных клеток - причина почти всех опухолей мозга.

Оценки количества нейронов и глиальных клеток в нервной системе человека широко варьируются и зависят от метода подсчета; пока ученые не пришли к единому мнению об их количестве. Только в самом мозге человека, по разным оценкам, насчитывается от 10 миллиардов до 1 триллиона нейронов; независимо от предполагаемого количества нейронов количество глиальных клеток примерно в 9 раз больше (Groves & Rebec, 1992). Эти цифры кажутся астрономическими, но такое количество клеток бесспорно необходимо, учитывая всю сложность поведения человека.

Потенциалы действия

Информация передается по нейрону в виде нейронного импульса, называемого потенциалом действия - электрохимическим импульсом, проходящим от дендритовой области к окончанию аксона. Каждый потенциал действия является результатом движения электрически заряженных молекул, называемых ионами, осуществляемого внутри и снаружи нейрона. Описанные ниже электрические и химические процессы приводят к формированию потенциала действия.

Клеточная мембрана является полупроницаемой; это означает, что некоторые химические вещества могут легко проходить через клеточную мембрану, тогда как другие не пропускаются через нее, за исключением тех случаев, когда специальные проходы в мембране открыты. Ионные каналы - это белковые молекулы наподобие пончиков, образующие поры в клеточной мембране (рис. 2.4). Открывая или закрывая поры, эти белковые структуры регулируют поток электрически заряженных ионов, таких как натрий (Na+), калий (K+), кальций (Са++) или хлор (Сl-). Каждый ионный канал действует избирательно: когда он открыт, то пропускает через себя только один тип ионов.

Рис. 2.4.

Такие химические вещества, как натрий, калий, кальций и хлор, проходят сквозь клеточную мембрану через торообразные протеиновые молекулы, называемые ионными каналами.

Нейрон, когда он не передает информацию, называют покоящимся нейроном. В покоящемся нейроне отдельные протеиновые структуры, называемые ионными насосами, помогают поддерживать неравномерное распределение различных ионов по клеточной мембране путем перекачивания их внутрь или вне клетки. Например, ионные насосы транспортируют Na+ за пределы нейрона каждый раз, когда он проникает в нейрон, и закачивают K+ обратно в нейрон каждый раз, когда он выходит наружу. Таким образом, у нейрона в состоянии покоя поддерживается высокая концентрация Na+ снаружи и низкая концентрация внутри клетки. Действие этих ионных каналов и насосов создает поляризацию клеточной мембраны, которая имеет положительный заряд с наружной и отрицательный заряд с внутренней стороны.

Когда нейрон, находящийся в состоянии покоя, стимулируется, разность потенциалов на клеточной мембране уменьшается. Если падение напряжения достаточное, натриевые каналы в точке стимуляции на короткое время открываются и ионы Na+ проникают внутрь клетки. Этот процесс называется деполяризацией; теперь внутренняя сторона мембраны в этом участке оказывается заряженной положительно относительно внешней. Соседние натриевые каналы чувствуют это падение напряжения и в свою очередь открываются, вызывая деполяризацию прилежащих участков. Такой самоподдерживаемый процесс деполяризации, распространяющейся вдоль тела клетки, называется нервным импульсом. По мере продвижения этого импульса по нейрону натриевые каналы за ним закрываются и включаются ионные насосы, быстро восстанавливающие в клеточной мембране исходное состояние покоя (рис. 2.5).


Рис. 2.5.

А) В течение действия потенциала натриевые шлюзы в мембране нейрона открыты и ионы натрия входят внутрь аксона, неся с собой положительный заряд, б) Когда потенциал действия возникает в какой-либо точке аксона, натриевые шлюзы закрываются в этой точке и открываются в следующей, расположенной по длине аксона. Когда натриевые шлюзы закрыты, открыты калиевые шлюзы и ионы калия выходят из аксона, унося с собой положительный заряд (по материалам Starr & Taggart, 1989).

Скорость продвижения нервного импульса по аксону может меняться от 3 до 300 км/час, в зависимости от диаметра аксона: как правило, чем больше диаметр, тем выше скорость. Скорость может зависеть также от того, есть ли у аксона миелиновое покрытие. Это покрытие состоит из специальных глиальных клеток, окутывающих аксон и идущих одна за другой с небольшими перехватами (промежутками) (как на рис. 2.1). Эти маленькие промежутки называют узлами Ранвьера. Благодаря изолирующим свойствам миелинового покрытия нервный импульс как бы прыгает от одного узла Ранвьера к другому - процесс, известный как салтаторная проводимость, что значительно повышает скорость передачи по аксону. (Термин салтаторная происходит от латинского слова saltare, что означает «прыгать».) Наличие миелиновых покрытий характерно для высших животных и особенно широко распространено в тех частях нервной системы, где скорость передачи - решающий фактор. Рассеянный склероз, сопровождаемый серьезными сенсомоторными дисфункциями нервной системы, - это заболевание, при котором организм разрушает свой собственный миелин.

Синаптическая передача импульсов

Синаптическое сопряжение между нейронами чрезвычайно важно, поскольку именно здесь клетки передают свои сигналы. Отдельный нейрон разряжается или возбуждается, когда приходящая к нему через множество синапсов стимуляция превышает определенный порог. Нейрон разряжается одним коротким импульсом и затем несколько тысячных долей секунды остается инактивным. Величина нервного импульса постоянна, и он не может быть вызван до тех пор, пока стимул не достигнет порогового уровня; это называется законом «все или ничего». Нервный импульс, раз начавшись, распространяется по аксону, достигая множества его окончаний.

Как мы уже говорили, в синапсе нейроны не контактируют непосредственно; здесь есть небольшая щель, через которую сигнал и должен быть передан (рис. 2.6). Когда нервный импульс продвигается по аксону и достигает синаптического окончания, он стимулирует находящиеся там синаптические пузырьки. Они представляют собой маленькие шарики, в которых содержатся нейротрансмиттеры; при стимуляции пузырьки выпускают эти нейротрансмиттеры. Нейротрансмиттеры проникают через синаптическую щель-зазор и захватываются молекулами воспринимающего нейрона, находящимися в его клеточной мембране. Молекулы медиатора и рецептора подходят друг к другу примерно так, как кусочки разрезной головоломки или ключ к замку. На основе соотношения двух молекул по принципу «ключ-замок» изменяется проницаемость мембраны воспринимающего нейрона. Некоторые медиаторы, находящиеся в связке со своими рецепторами, оказывают возбуждающее действие и увеличивают проницаемость в сторону деполяризации, а некоторые оказывают тормозящее действие и уменьшают проницаемость. При возбуждающем действии вероятность возбуждения нейрона увеличивается, а при тормозящем - уменьшается.

Рис. 2.6.

Медиатор доставляется к пресинаптической мембране в синаптических пузырьках, которые смешиваются с этой мембраной, высвобождая свое содержимое в синаптическую щель. Молекулы медиатора проникают через щель и соединяются с рецепторными молекулами постсинаптической мембраны.

Один нейрон может иметь многие тысячи синапсов с сетью других нейронов. Некоторые из этих нейронов высвобождают возбуждающие медиаторы, другие - тормозящие. В зависимости от характерного для них паттерна передачи импульсов (firing) различные аксоны высвобождают различные вещества-медиаторы в разное время. Если в определенное время и на определенном участке клеточной мембраны возбуждающие воздействия на воспринимающий нейрон начинают превышать тормозящие, то происходит деполяризация и нейрон разряжается импульсом соответственно закону «все или ничего».

.

После высвобождения молекул медиатора и прохождения их через синаптическую щель их действие должно быть очень коротким. В противном случае воздействие медиатора будет длиться слишком долго и точный контроль станет невозможным. Кратковременность действия достигается одним из двух путей. Некоторые медиаторы почти мгновенно удаляются из синапса посредством обратного захвата - процесса, при котором медиатор снова поглощается синаптическими окончаниями, откуда он был выпущен. Обратный захват прекращает действие медиатора и избавляет окончания аксона от необходимости дополнительно производить это вещество. Действие других медиаторов прекращается благодаря деградации - процессу, при котором ферменты, содержащиеся в мембране воспринимающего нейрона, инактивируют медиатор, химически разрушая его.

Нейротрансмиттеры

Известно более 70 различных медиаторов, и нет сомнений, что будут открыты еще. Помимо этого, некоторые медиаторы могут связываться более чем с одним типом рецепторных молекул и вызывать при этом различные эффекты. Например, нейротрансмиттер глутамат может активизировать как минимум 16 различных типов рецепторных молекул, позволяя нейронам реагировать различным образом на этот один и тот же нейротрансмиттер (Westbrook, 1994). Некоторые нейротрансмиттеры являются возбуждающими в одних зонах и тормозящими в других, так как в этих процессах участвуют два различных типа рецепторных молекул. В этой главе мы, конечно, не сможем рассказать о всех нейротрансмиттерах, обнаруженных в нервной системе, поэтому подробно остановимся на некоторых из них, оказывающих существенное влияние на поведение.

Ацетилхолин (АЦХ) обнаружен во многих синапсах по всей нервной системе. Вообще, это возбуждающий нейротрансмиттер, но он может быть и тормозящим, в зависимости от того, какой тип молекулы рецептора находится в мембране воспринимающего нейрона. Особенно часто АЦХ встречается в гиппокампе - зоне переднего мозга, играющей ключевую роль в формировании новых следов памяти (Squire, 1987).

Болезнь Альцгеймера (предстарческий склероз мозга. - Прим. перев.) - тяжелое нарушение, часто встречающееся в пожилом возрасте и сопровождающееся нарушениями памяти и других когнитивных функций. Было показано, что при болезни Альцгеймера вырождаются нейроны переднего мозга, производящие АЦХ, и соответственно снижается способность мозга производить АЦХ; чем меньше АЦХ производится передним мозгом, тем обширнее потеря памяти.

АЦХ выделяется также во всех синапсах, образованных между нервными окончаниями и волокнами скелетной мускулатуры. АЦХ подводится к концевым пластинкам - небольшим образованиям, расположенным на клетках мышц. Концевые пластинки покрыты молекулами рецептора, которые при активации их ацетилхолином запускают химическую реакцию между молекулами внутри мышечных клеток, заставляя их сокращаться. Некоторые препараты, влияющие на АЦХ, могут вызывать паралич мышц. Например, яд ботулин, выделяемый некоторыми видами бактерий в плохо закрытых консервах, блокирует выделение АЦХ в нервно-мышечных синапсах и может вызвать смерть от паралича дыхательных мышц. Некоторые нервные газы военного назначения, а также многие пестициды вызывают паралич путем разрушения ферментов, расщепляющих АЦХ после включения нейрона; когда процесс расщепления нарушен, в нервной системе происходит неконтролируемое накопление АЦХ и нормальная синаптическая передача становится невозможной.

Норэпинефрин (НЭ) - это медиатор, продуцируемый многими нейронами ствола мозга. Такие хорошо известные препараты, как кокаин и амфетамины, продлевают действие норэпинефрина путем замедления его обратного захвата. Из-за задержки обратного захвата воспринимающий нейрон активируется дольше, чем и объясняется психостимулирующий эффект этих препаратов. Литий, наоборот, ускоряет обратный захват НЭ, вызывая у человека подавленное настроение. Всякое вещество, повышающее или понижающее уровень НЭ в мозге, соответственно повышает или снижает настроение человека.

Допамин. Химически допамин очень близок к норэпинефрину. Высвобождение допамина в определенных зонах головного мозга вызывает интенсивное ощущение удовольствия, и в настоящий момент проводятся исследования, изучающие роль допамина в развитии пристрастий. Избыток допамина в определенных зонах мозга может вызывать шизофрению, тогда как его недостаток в других зонах может приводить к болезни Паркинсона. Лекарства, используемые для лечения шизофрении, например торазин или клозапин, блокируют рецепторы допамина. В противовес им препарат L-dopa, чаще всего прописываемый страдающим болезнью Паркинсона, увеличивает количество допамина в мозге.

Серотонин. Серотонин принадлежит к той же группе химических препаратов, называемых моноаминами, что и допамин и норэпинефрин. Как и норэпинефрин, серотонин играет важную роль в регулировании настроения. Так, низкий уровень серотонина ассоциируется с ощущением депрессии. Были разработаны специфические антидепрессанты, называемые селективными ингибиторами обратного захвата серотонина (СИОЗС), повышающие уровень серотонина в мозге путем блокирования обратного захвата серотонина пресинаптическими окончаниями нейронов. Прозак, Золофт и Паксил, лекарственные препараты, как правило прописываемые для лечения депрессии, - являются ингибиторами обратного захвата серотонина. Серотонин также играет важную роль в регуляции сна и аппетита, а потому используется также при лечении расстройства питания - булимии. Изменяющий настроение препарат ЛСД оказывает свое воздействие, повышая уровень серотонина в мозге. ЛСД по своему химическому строению похож на медиатор серотонин. влияющий на эмоции. Данные показывают, что ЛСД накапливается в некоторых клетках мозга, где имитирует действие серотонина и тем самым создает повышенную стимуляцию этих клеток.

ГАМК. Еще один широкоизвестный медиатор - гамма-аминомасляная кислота (ГАМК), являющаяся одним из основных тормозных медиаторов в нервной системе. Например, препарат пикротоксин блокирует рецепторы ГАМК и вызывает конвульсии, поскольку из-за недостатка тормозного действия ГАМК контроль за движением мышц становится затрудненным. Некоторые транквилизаторы, основанные на свойстве ГАМК усиливать торможение, применяются для лечения пациентов, страдающих тревожностью.

Глутамат. Возбуждающий медиатор глутамат присутствует в большем количестве нейронов центральной нервной системы, чем любой другой медиатор. Существует как минимум три подтипа глутаматовых рецепторов, и один из них, как полагают, играет роль в научении и памяти. Он называется рецептором НМДА - по названию вещества, применяемого для его обнаружения (N-метил D-аспартат). Больше всего НМДА-рецепторов содержится в нейронах гиппокампа (участка около середины мозга), и есть различные данные, показывающие, что эта зона играет решающую роль в формировании новых следов памяти.

Рецепторы НМДА отличаются от других рецепторов тем, что для их активации нужны последовательные сигналы от двух различных нейронов. Сигнал от первого из них повышает чувствительность клеточной мембраны, в которой находится рецептор НМДА. После повышения чувствительности второй сигнал (глутаминовый медиатор от другого нейрона) сможет активировать этот рецептор. При получении такого сдвоенного сигнала рецептор НМДА пропускает в нейрон очень много ионов кальция. Их приток вызывает долговременное изменение в мембране нейрона, делая ее более чувствительной к первоначальному сигналу, когда тот повторится в следующий раз; это явление называют долговременной потенциацией, или ДП (рис. 2.7).


Рис. 2.7.

На схеме показан возможный механизм влияния рецепторов НМДА на долговременное изменение силы синаптической связи (эффект ДП). Когда первый передающий нейрон высвобождает медиаторы, они активируют не-НМДА рецепторы воспринимающего нейрона (1), которые частично деполяризуют клеточную мембрану (2). Эта частичная деполяризация повышает чувствительность НМДА-рецепторов, так что теперь их могут активировать глутаматовые медиаторы, высвобождаемые вторым передающим нейроном (3). Активация НМДА-рецепторов заставляет открыться связанные с ними кальциевые каналы (4). Ионы кальция поступают в клетку и взаимодействуют с различными ферментами (5), что, как полагают, приводит к перестройке клеточной мембраны (6). В результате перестройки у воспринимающего нейрона повышается чувствительность к медиаторам, высвобождаемым первым нейроном, так что последний со временем сможет сам по себе активировать воспринимающий нейрон; так возникает эффект долговременной потенциации.

Такой механизм, в котором два конвергирующих сигнала усиливают синаптическую связь, может объяснить, как отдельные события ассоциируются в памяти. Например, в эксперименте с ассоциативным научением вслед за звуком колокольчика немедленно показывалась пища. Когда собака видит пищу, у нее выделяется слюна. Но при повторяющемся сочетании звука и пищи собака научается выделять слюну только на звук колокольчика: это может указывать на то, что сигнал «колокольчик» и сигнал «пища» конвергировали на синапсах, вызывающих слюноотделение. При достаточно многократном предъявлении пары «колокольчик-еда» эти синаптические связи усиливаются под влиянием ДП, и со временем один только звук колокольчика заставляет собаку выделять слюну. На основе механизма НМДА создана любопытная теория ассоциирования событий в памяти, которая сейчас активно развивается (Malonow, 1994; Zalutsky & Nicoll, 1990).

Исследования нейротрансмиттеров и рецепторов получили широкое практическое применение. Некоторые из сфер их применения описаны в рубрике «На переднем крае психологических исследований» на следующей странице.